Special features of the relation between Fisher Information and Schrodinger eigenvalue equation


Abstract in English

It is well known that a suggestive relation exists that links Schrodingers equation (SE) to the information-optimizing principle based on Fishers information measure (FIM). The connection entails the existence of a Legendre transform structure underlying the SE. Here we show that appeal to this structure leads to a first order differential equation for the SEs eigenvalues that, in certain cases, can be used to obtain the eigenvalues without explicitly solving SE. Complying with the above mentioned equation constitutes a necessary condition to be satisfied by an energy eigenvalue. We show that the general solution is unique.

Download