Do you want to publish a course? Click here

Tracing rejuvenation events in nearby S0 galaxies

97   0   0.0 ( 0 )
 Added by Antonietta Marino
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

With the aim of characterizing rejuvenation processes in early-type galaxies, we analyzed five barred S0 galaxies showing prominent outer ring in ultraviolet (UV) imaging. We analyzed GALEX far- (FUV) and near- (NUV) UV and optical data using stellar population models and estimated the age and the stellar mass of the entire galaxies and of the UV-bright ring structures. Outer rings consist of young (<200 Myr old) stellar populations, accounting for up to 70% of the FUV flux but containing only a few % of the total stellar mass. Integrated photometry of the whole galaxies places four of these objects on the green valley, indicating a globally evolving nature. We suggest such galaxy evolution is likely driven by bar induced instabilities, i.e. inner secular evolution, that conveys gas to the nucleus and to the outer rings. At the same time, HI observations of NGC 1533 and NGC 2962 suggest external gas re-fueling can play a role in the rejuvenation processes of such galaxies.



rate research

Read More

We analyze line-of-sight atomic hydrogen (HI) line profiles of 31 nearby, low-mass galaxies selected from the Very Large Array - ACS Nearby Galaxy Survey Treasury (VLA-ANGST) and The HI Nearby Galaxy Survey (THINGS) to trace regions containing cold (T $lesssim$ 1400 K) HI from observations with a uniform linear scale of 200 pc/beam. Our galaxy sample spans four orders of magnitude in total HI mass and nine magnitudes in M_B. We fit single and multiple component functions to each spectrum to isolate the cold, neutral medium given by a low dispersion (<6 km/s) component of the spectrum. Most HI spectra are adequately fit by a single Gaussian with a dispersion of 8-12 km/s. Cold HI is found in 23 of 27 (~85%) galaxies after a reduction of the sample size due to quality control cuts. The cold HI contributes ~20% of the total line-of-sight flux when found with warm HI. Spectra best fit by a single Gaussian, but dominated by cold HI emission (i.e., have velocity dispersions <6 km/s) are found primarily beyond the optical radius of the host galaxy. The cold HI is typically found in localized regions and is generally not coincident with the very highest surface density peaks of the global HI distribution (which are usually areas of recent star formation). We find a lower limit for the mass fraction of cold-to-total HI gas of only a few percent in each galaxy.
By undertaking deep long-slit spectroscopy with the focal reducer SCORPIO of the Russian 6m telescope, we studied stellar population properties and their variation with radius in 15 nearby S0 galaxies sampling a wide range of luminosities and environments. For the large-scale stellar disks of S0s, we have measured SSP-equivalent metallicities ranging from the solar one down to [Z/H]=-0.4 - -0.7, rather high magnesium-to-iron ratios, [Mg/Fe] > +0.2, and mostly old SSP-equivalent ages. Nine of 15 (60%) galaxies have large-scale stellar disks older than 10 Gyr, and among those we find all the galaxies which reside in denser environments. The isolated galaxies may have intermediate-age stellar disks which are 7-9 Gyr old. Only two galaxies of our sample, NGC 4111 and NGC 7332, reveal SSP-equivalent ages of their disks of 2-3 Gyrs. Just these two young disks appear to be thin, while the other, older disks have scale heights typical for thick stellar disks. The stellar populations in the bulges at radii of 0.5r_eff are on the contrary more metal-rich than the solar metallicity, with the ages homogeneously distributed between 2 and 15 Gyr, being almost always younger than the disks. We conclude that S0 galaxies could not form in groups at z=0.4 as is thought now; a new scenario of the general evolution of disk galaxies is proposed instead.
We present stellar population age and metallicity trends for a sample of 59 S0 galaxies based on optical SDSS and NIR J & H photometry. When combined with optical g and r passband imaging data from the SDSS archive and stellar population models, we obtain radial age and metallicity trends out to at least 5 effective radii for most of the galaxies in our sample. The sample covers a range in stellar mass and light concentration. We find an average central light-weighted age of ~ 4 Gyr and central metallicity [Z/H] ~ 0.2 dex. Almost all galaxies show a negative metallicity gradient from the center out, with an average value of Delta[Z/H]/Delta(log(r/Re)) = -0.6. An age increase, decrease, and minimal change with radius is observed for 58%, 19%, and 23%, respectively, for a mean age gradient of Delta(age)/Delta(log(r/Re)) = 2.3 Gyr dex^{-1}. For 14 out of 59 galaxies, the light-weighted age of the outer region is greater than 10 Gyr. We find that galaxies with both lower mass and lower concentration have younger light-weighted ages and lower light-weighted metallicities. This mass-metallicity relation extends into the outer regions of our S0 galaxies. Our results are consistent with the formation of S0 galaxies through the transformation of spiral galaxy disks. Determining the structural component that makes up the outer region of galaxies with old outksirts is a necessary step to understand the formation history of S0 galaxies.
194 - T.D. Rawle 2013
We present deep GMOS long-slit spectroscopy of 15 Coma cluster S0 galaxies, and extract kinematic properties along the major axis to several times the disc scale-length. Supplementing our dataset with previously published data, we create a combined sample of 29 Coma S0s, as well as a comparison sample of 38 Coma spirals. Using photometry from SDSS and 2MASS, we construct the Tully-Fisher relation (TFR; luminosity versus maximum rotational velocity) for S0 galaxies. At fixed rotational velocity, the Coma S0 galaxies are on average fainter than Coma spirals by 1.10$pm$0.18, 0.86$pm$0.19 and 0.83$pm$0.19 mag in the g, i and Ks bands respectively. The typical S0 offsets remain unchanged when calculated relative to large field-galaxy spiral samples. The observed offsets are consistent with a simple star formation model in which S0s are identical to spirals until abrupt quenching occurs at some intermediate redshift. The offsets form a continuous distribution tracing the time since the cessation of star formation, and exhibit a strong correlation (>6{sigma}) with residuals from the optical colour-magnitude relation. Typically, S0s which are fainter than average for their rotational velocity are also redder than average for their luminosity. The S0 TFR offset is also correlated with both the projected cluster-centric radius and the {Sigma} (projected) local density parameter. Since current local environment is correlated with time of accretion into the cluster, our results support a scenario in which transformation of spirals to S0s is triggered by cluster infall.
140 - E. Laurikainen , H. Salo , R. Buta 2011
An atlas of Ks-band images of 206 early-type galaxies is presented, including 160 S0-S0/a galaxies, 12 ellipticals, and 33 Sa galaxies. A majority of the Atlas galaxies belong to a magnitude-limited (mB<12.5 mag) sample of 185 NIRS0S (Near-IR S0 galaxy Survey) galaxies. To assure that mis-classified S0s are not omitted, 25 ellipticals from RC3 classified as S0s in the Carnegie Atlas were included in the sample. The images are 2-3 mag deeper than 2MASS images. Both visual and photometric classifications are made. Special attention is paid to the classification of lenses, coded in a systematic manner. A new lens-type, called a barlens, is introduced. Also, boxy/peanut/x-shaped structures are identified in many barred galaxies, even-though the galaxies are not seen in edge-on view, indicating that vertical thickening is not enough to explain them. Multiple lenses appear in 25% of the Atlas galaxies, which is a challenge to the hierarchical evolutionary picture of galaxies. Such models need to explain how the lenses were formed and survived in multiple merger events that galaxies may have suffered during their lifetimes. Following the early suggestion by van den Bergh, candidates of S0c galaxies are shown, which galaxies are expected to be former Sc-type spirals stripped out of gas.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا