Do you want to publish a course? Click here

Zero-energy neutron-triton and proton-Helium-3 scattering with eftnopi

138   0   0.0 ( 0 )
 Added by Johannes Kirscher
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

Model-independent constraints for the neutron-triton and proton-Helium-3 scattering lengths are calculated with a leading-order interaction derived from an effective field theory without explicit pions. Using the singlet neutron-proton scattering length, the deuteron, and the triton binding energy as input, the predictions $ants=9.2pm2.6 $fm, $antt=7.6pm1.6 $fm, $aphes=3.6pm0.32 $fm, and $aphet=3.1pm 0.23 $fm are obtained. The calculations employ the resonating group method and include the Coulomb interaction when appropriate. The theoretical uncertainty is assessed via a variation of the regulator parameter of the short-distance interaction from $400 $MeV to $1.6 $GeV. The phase-shift and scattering-length results for the proton-Helium-3 system are consistent with a recent phase shift analysis and with model calculations. For neutron-triton, the results for the scattering lengths in both singlet and triplet channels are significantly smaller than suggested by R-matrix and partial-wave-analysis extractions from data. For a better understanding of this discrepancy, the sensitivity of the low-energy four-body scattering system to variations in the neutron-neutron and proton-proton two-nucleon scattering lengths is calculated. Induced by strong charge-symmetry-breaking contact interactions, this dependence is found insignificant. In contrast, a strong correlation between the neutron-triton scattering length and the triton binding energy analogous to the Phillips line is found.



rate research

Read More

We compute a model-independent correlation between the difference of neutron-neutron and proton-proton scattering lengths |a(nn)-a^C(pp)| and the splitting in binding energies between Helium-3 and tritium nuclei. We use the effective field theory without explicit pions to show that this correlation relies only on the existence of large scattering lengths in the NN system. Our leading-order calculation, taken together with experimental values for binding energies and a^C(pp), yields a(nn)=-22.9 pm 4.1 fm.
The Kohn variational principle and the hyperspherical harmonics technique are applied to study n-3H elastic scattering at low energies. In this contribution the first results obtained using a non-local realistic interaction derived from the chiral perturbation theory are reported. They are found to be in good agreement with those obtained solving the Faddeev-Yakubovsky equations. The calculated total and differential cross sections are compared with the available experimental data. The effect of including a three-nucleon interaction is also discussed.
312 - A. Deltuva , A.C. Fonseca 2013
Background: Theoretical calculations of the four-particle scattering above the four-cluster breakup threshold are technically very difficult due to nontrivial singularities or boundary conditions. Further complications arise when the long-range Coulomb force is present. Purpose: We aim at calculating proton-${}^3$He elastic scattering observables above three- and four-cluster breakup threshold. Methods: We employ Alt, Grassberger, and Sandhas (AGS) equations for the four-nucleon transition operators and solve them in the momentum-space framework using the complex-energy method whose accuracy and practical applicability is improved by a special integration method. Results: Using realistic nuclear interaction models we obtain fully converged results for the proton-${}^3$He elastic scattering. The differential cross section, proton and ${}^3$He analyzing powers, spin correlation and spin transfer coefficients are calculated at proton energies ranging from 7 to 35 MeV. Effective three- and four-nucleon forces are included via the explicit excitation of a nucleon to a $Delta$ isobar. Conclusions: Realistic proton-${}^3$He scattering calculations above the four-nucleon breakup threshold are feasible. There is quite good agreement between the theoretical predictions and experimental data for the proton-${}^3$He scattering in the considered energy regime. The most remarkable disagreements are the peak of the proton analyzing power at lower energies and the minimum of the differential cross section at higher energies. Inclusion of the $Delta$ isobar reduces the latter discrepancy.
198 - A. Deltuva , A. C. Fonseca 2015
Proton-${}^3$H elastic scattering and charge-exchange reaction ${}^3$H$(p,n){}^3$He in the energy regime above four-nucleon breakup threshold are described in the momentum-space transition operator framework. Fully converged results are obtained using realistic two-nucleon potentials and two-proton Coulomb force as dynamic input. Differential cross section, proton analyzing power, outgoing neutron polarization, and proton-to-neutron polarization transfer coefficients are calculated between 6 and 30 MeV proton beam energy. Good agreement with the experimental data is found for the differential cross section both in elastic and charge-exchange reactions; the latter shows a complicated energy and angular dependence. The most sizable discrepancies between predictions and data are found for the proton analyzing power and outgoing neutron polarization in the charge-exchange reaction, while the respective proton-to-neutron polarization transfer coefficients are well described by the calculations.
Emissions of free neutrons and protons from the central collisions of 124Sn+124Sn and 112Sn+112Sn reactions are simulated using the Improved Quantum Molecular Dynamics model with two different density dependence of the symmetry energy in the nuclear equation of state. The constructed double ratios of the neutron to proton ratios of the two reaction systems are found to be sensitive to the symmetry terms in the EOS. The effect of cluster formation is examined and found to affect the double ratios mainly in the low energy region. In order to extract better information on symmetry energy with transport models, it is therefore important to have accurate data in the high energy region which also is affected minimally by sequential decays.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا