Do you want to publish a course? Click here

Observational Properties of the Metal-Poor Thick Disk of the Milky Way Galaxy and Insights into Its Origins

107   0   0.0 ( 0 )
 Added by Gregory Ruchti
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have undertaken the study of the elemental abundances and kinematic properties of a metal-poor sample of candidate thick-disk stars selected from the RAVE spectroscopic survey of bright stars to differentiate among the present scenarios of the formation of the thick disk. In this paper, we report on a sample of 214 red giant branch, 31 red clump/horizontal branch, and 74 main-sequence/sub-giant branch metal-poor stars, which serves to augment our previous sample of only giant stars. We find that the thick disk [alpha/Fe] ratios are enhanced, and have little variation (<0.1 dex), in agreement with our previous study. The augmented sample further allows, for the first time, investigation of the gradients in the metal-poor thick disk. For stars with [Fe/H] < -1.2, the thick disk shows very small gradients, <0.03 +/- 0.02 dex/kpc, in alpha-enhancement, while we find a +0.01 +/- 0.04 dex/kpc radial gradient and a -0.09 +/- 0.05 dex/kpc vertical gradient in iron abundance. In addition, we show that the peak of the distribution of orbital eccentricities for our sample agrees better with models in which the stars that comprise the thick disk were formed primarily in the Galaxy, with direct accretion of stars contributing little. Our results thus disfavor direct accretion of stars from dwarf galaxies into the thick disk as a major contributor to the thick disk population, but cannot discriminate between alternative models for the thick disk, such as those that invoke high-redshift (gas-rich) mergers, heating of a pre-existing thin stellar disk by a minor merger, or efficient radial migration of stars.



rate research

Read More

130 - M. Hanke , A. Koch , C. J. Hansen 2016
We present our detailed spectroscopic analysis of the chemical composition of four red giant stars in the halo globular cluster NGC 6426. We obtained high-resolution spectra using the Magellan2/MIKE spectrograph, from which we derived equivalent widths and subsequently computed abundances of 24 species of 22 chemical elements. For the purpose of measuring equivalent widths, we developed a new semi-automated tool, called EWCODE. We report a mean Fe content of [Fe/H] = -2.34$pm$0.05 dex (stat.) in accordance with previous studies. At a mean $alpha$-abundance of [(Mg,Si,Ca)/3 Fe] = 0.39$pm$0.03 dex, NGC 6426 falls on the trend drawn by the Milky Way halo and other globular clusters at comparably low metallicities. The distribution of the lighter $alpha$-elements as well as the enhanced ratio [Zn/Fe] = 0.39 dex could originate from hypernova enrichment of the pre-cluster medium. We find tentative evidence for a spread in the elements Mg, Si, and Zn, indicating an enrichment scenario, where ejecta of evolved massive stars of a slightly older population polluted a newly born younger one. The heavy element abundances in this cluster fit well into the picture of metal-poor globular clusters, which in that respect appear to be remarkably homogeneous. The pattern of the neutron-capture elements heavier than Zn point towards an enrichment history governed by the r-process with only little -if any- sign of s-process contributions. This finding is supported by the striking similarity of our program stars to the metal-poor field star HD 108317.
We present a chemo-dynamical analysis of low-resolution ($R sim 1300$) spectroscopy of stars from the AAOmega Evolution of Galactic Structure (AEGIS) survey, focusing on two key populations of carbon-enhanced metal-poor (CEMP) stars within the disk system of the Milky Way: a mildly prograde population ($L_z < 1000,$kpc$,$km$,$s$^{-1}$) and a strongly prograde ($L_z > 1000,$kpc$,$km$,$s$^{-1}$) population. Based on their chemical and kinematic characteristics, and on comparisons with similar populations found in the recent literature, we tentatively associate the former with an ex-situ inner-halo population originating from either the $Gaia$ Sausage or $Gaia$-Enceladus. The latter population is linked to the metal-weak thick-disk (MWTD). We discuss their implications in the context of the formation history of the Milky Way.
We use Gaia DR2 astrometric and photometric data, published radial velocities and MESA models to infer distances, orbits, surface gravities, and effective temperatures for all ultra metal-poor stars ($FeH<-4.0$ dex) available in the literature. Assuming that these stars are old ($>11Gyr$) and that they are expected to belong to the Milky Way halo, we find that these 42 stars (18 dwarf stars and 24 giants or sub-giants) are currently within $sim20kpc$ of the Sun and that they map a wide variety of orbits. A large fraction of those stars remains confined to the inner parts of the halo and was likely formed or accreted early on in the history of the Milky Way, while others have larger apocentres ($>30kpc$), hinting at later accretion from dwarf galaxies. Of particular interest, we find evidence that a significant fraction of all known UMP stars ($sim26$%) are on prograde orbits confined within $3kpc$ of the Milky Way plane ($J_z < 100 kms kpc$). One intriguing interpretation is that these stars belonged to the massive building block(s) of the proto-Milky Way that formed the backbone of the Milky Way disc. Alternatively, they might have formed in the early disc and have been dynamically heated, or have been brought into the Milky Way by one or more accretion events whose orbit was dragged into the plane by dynamical friction before disruption. The combination of the exquisite Gaia DR2 data and surveys of the very metal-poor sky opens an exciting era in which we can trace the very early formation of the Milky Way.
We analyze 494 main sequence turnoff and subgiant stars from the AMBRE:HARPS survey. These stars have accurate astrometric information from textit{Gaia}/DR1, providing reliable age estimates with relative uncertainties of $pm1-2$ Gyr and allowing precise orbital determinations. The sample is split based on chemistry into a low-[Mg/Fe] sequence, which are often identified as thin disk stellar populations, and a high-[Mg/Fe] sequence, which are often associated with the thick disk. We find that the high-[Mg/Fe] chemical sequence has extended star formation for several Gyr and is coeval with the oldest stars of the low-[Mg/Fe] chemical sequence: both the low- and high-[Mg/Fe] sequences were forming stars at the same time. The high-[Mg/Fe] stellar populations are only vertically extended for the oldest, most-metal poor and highest [Mg/Fe] stars. When comparing vertical velocity dispersion for both sequences, the high-[Mg/Fe] sequence has lower velocity dispersion than the low-[Mg/Fe] sequence for stars of similar age. Identifying either group as thin or thick disk based on chemistry is misleading. The stars belonging to the high-[Mg/Fe] sequence have perigalacticons that originate in the inner disk, while the perigalacticons of stars on the low-[Mg/Fe] sequence are generally around the solar neighborhood. From the orbital properties of the stars, the high-and low-[Mg/Fe] sequences are most likely a reflection of the chemical enrichment history of the inner and outer disk populations; radial mixing causes both populations to be observed in situ at the solar position. Based on these results, we emphasize that it is important to be clear in defining what populations are being referenced when using the terms thin and thick disk, and that ideally the term thick disk should be reserved for purely geometric definitions to avoid confusion and be consistent with definitions in external galaxies.
The first stars are predicted to have formed within 200 million years after the Big Bang, initiating the cosmic dawn. A true first star has not yet been discovered, although stars with tiny amounts of elements heavier than helium (metals) have been found in the outer regions (halo) of the Milky Way. The first stars and their immediate successors should, however, preferentially be found today in the central regions (bulges) of galaxies, because they formed in the largest over-densities that grew gravitationally with time. The Milky Way bulge underwent a rapid chemical enrichment during the first 1-2 billion years, leading to a dearth of early, metal-poor stars. Here we report observations of extremely metal-poor stars in the Milky Way bulge, including one star with an iron abundance about 10,000 times lower than the solar value without noticeable carbon enhancement. We confirm that the most metal-poor bulge stars are on tight orbits around the Galactic Centre, rather than being halo stars passing through the bulge, as expected for stars formed at redshifts greater than 15. Their chemical compositions are in general similar to typical halo stars of the same metallicity although intriguing differences exist, including lower abundances of carbon.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا