Do you want to publish a course? Click here

The Australia Telescope Compact Array Broadband Backend (CABB)

97   0   0.0 ( 0 )
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Here we describe the Compact Array Broadband Backend (CABB) and present first results obtained with the upgraded Australia Telescope Compact Array (ATCA). The 16-fold increase in observing bandwidth, from 2 x 128 MHz to 2 x 2048 MHz, high bit sampling, and addition of 16 zoom windows (each divided into a further 2048 channels) provide major improvements for all ATCA observations. The benefits of the new system are: (1) hugely increased radio continuum and polarization sensitivity as well as image fidelity, (2) substantially improved capability to search for and map emission and absorption lines over large velocity ranges, (3) simultaneous multi-line and continuum observations, (4) increased sensitivity, survey speed and dynamic range due to high-bit sampling, and (5) high velocity resolution, while maintaining full polarization output. The new CABB system encourages all observers to make use of both spectral line and continuum data to achieve their full potential. Given the dramatic increase of the ATCA capabilities in all bands (ranging from 1.1 to 105 GHz) CABB enables scientific projects that were not feasible before the upgrade, such as simultaneous observations of multiple spectral lines, on-the-fly mapping, fast follow-up of radio transients (e.g., the radio afterglow of new supernovae) and maser observations at high velocity resolution and full polarization. The first science results presented here include wide-band spectra, high dynamic-range images, and polarization measurements, highlighting the increased capability and discovery potential of the ATCA.



rate research

Read More

The recently commissioned Compact Array Broadband Backend (CABB) on the Australia Telescope Compact Array (ATCA) provides 2 GHz bandwidth in each frequency and polarisation, significantly increasing the sensitivity of the Array. This increased sensitivity allows for larger samples of sources to be targeted whilst also probing fainter radio luminosities. Using CABB, we have observed a large sample of objects at 20 GHz to investigate the high-frequency radio luminosity distribution of X-ray selected QSOs at redshifts less than 1. Observing at high frequencies allows us to focus on the core emission of the AGN, hence recording the most recent activity.
The supermassive black hole, Sagittarius A* (Sgr A*), at the centre of the Milky Way undergoes regular flaring activity which is thought to arise from the innermost region of the accretion flow. We performed the monitoring observations of the Galactic Centre to study the flux-density variations at 3mm using the Australia Telescope Compact Array (ATCA) between 2010 and 2014. We obtain the light curves of Sgr A* by subtracting the contributions from the extended emission around it, and the elevation and time dependent gains of the telescope. We perform structure function analysis and the Bayesian blocks representation to detect flare events. The observations detect six instances of significant variability in the flux density of Sgr A* in three observations, with variations between 0.5 to 1.0 Jy, which last for 1.5 $-$ 3 hours. We use the adiabatically expanding plasmon model to explain the short time-scale variations in the flux density. We derive the physical quantities of the modelled flare emission, such as the source expansion speed $v_{mathrm{exp}}$, source sizes, spectral indices, and the turnover frequency. These parameters imply that the expanding source components are either confined to the immediate vicinity of Sgr A* by contributing to the corona or the disc, or have a bulk motion greater than $v_{mathrm{exp}}$. No exceptional flux density variation on short flare time-scales was observed during the approach and the flyby of the dusty S-cluster object (DSO/G2). This is consistent with its compactness and the absence of a large bow shock.
We report results of the first phase of observations with the Australia Telescope Compact Array (ATCA) at 5 and 9 GHz of the fields around 411 gamma-ray sources with declinations < +10 deg detected by Fermi but marked as unassociated in the 2FGL catalogue. We have detected 424 sources with flux densities in a range of 2 mJy to 6 Jy that lie within the 99 per cent localisation uncertainty of 283 gamma-ray sources. Of these, 146 objects were detected in both the 5 and 9 GHz bands. We found 84 sources in our sample with a spectral index flatter than -0.5. The majority of detected sources are weaker than 100 mJy and for this reason were not found in previous surveys. Approximately 1/3 of our sample, 128 objects, have the probability of being associated by more than 10 times than the probability of being a background source found in the vicinity of a gamma-ray object by chance. We present the catalogue of positions of these sources, estimates of their flux densities and spectral indices where available.
PSR J1357$-$6429 is a young and energetic radio pulsar detected in X-rays and $gamma$-rays. It powers a compact pulsar wind nebula with a jet visible in X-rays and a large scale plerion detected in X-ray and TeV ranges. Previous multiwavelength studies suggested that the pulsar has a significant proper motion of about 180 mas yr$^{-1}$ implying an extremely high transverse velocity of about 2000 km s$^{-1}$. In order to verify that, we performed radio-interferometric observations of PSR J1357$-$6429 with the the Australia Telescope Compact Array (ATCA) in the 2.1 GHz band. We detected the pulsar with a mean flux density of $212pm5$ $mu$Jy and obtained the most accurate pulsar position, RA = 13:57:02.525(14) and Dec = $-$64:29:29.89(15). Using the new and archival ATCA data, we did not find any proper motion and estimated its 90 per cent upper limit $mu < 106$ mas yr$^{-1}$. The pulsar shows a highly polarised single pulse, as it was earlier observed at 1.4 GHz. Spectral analysis revealed a shallow spectral index $alpha_{ u}$ = $0.5 pm 0.1$. Based on our new radio position of the pulsar, we disclaim its optical counterpart candidate reported before.
PUMA is a proposal for an ultra-wideband, low-resolution and transit interferometric radio telescope operating at $200-1100,mathrm{MHz}$. Its design is driven by six science goals which span three science themes: the physics of dark energy (measuring the expansion history and growth of the universe up to $z=6$), the physics of inflation (constraining primordial non-Gaussianity and primordial features) and the transient radio sky (detecting one million fast radio bursts and following up SKA-discovered pulsars). We propose two array configurations composed of hexagonally close-packed 6m dish arrangements with 50% fill factor. The initial 5,000 element petite array is scientifically compelling, and can act as a demonstrator and a stepping stone to the full 32,000 element full array. Viewed as a 21cm intensity mapping telescope, the program has the noise equivalent of a traditional spectroscopic galaxy survey comprised of 0.6 and 2.5 billion galaxies at a comoving wavenumber of $k=0.5,hmathrm{Mpc}^{-1}$ spanning the redshift range $z = 0.3 - 6$ for the petite and full configurations, respectively. At redshifts beyond $z=2$, the 21cm technique is a uniquely powerful way of mapping the universe, while the low-redshift range will allow for numerous cross-correlations with existing and upcoming surveys. This program is enabled by the development of ultra-wideband radio feeds, cost-effective dish construction methods, commodity radio-frequency electronics driven by the telecommunication industry and the emergence of sufficient computing power to facilitate real-time signal processing that exploits the full potential of massive radio arrays. The project has an estimated construction cost of 55 and 330 million FY19 USD for the petite and full array configurations. Including R&D, design, operations and science analysis, the cost rises to 125 and 600 million FY19 USD, respectively.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا