No Arabic abstract
We report the detection of a faint optical flash by the 2-m Faulkes Telescope North simultaneously with the second of two prompt gamma-ray pulses in INTEGRAL gamma-ray burst (GRB) 080603A, beginning at t_rest = 37 s after the onset of the GRB. This optical flash appears to be distinct from the subsequent emerging afterglow emission, for which we present comprehensive broadband radio to X-ray light curves to 13 days post-burst and rigorously test the standard fireball model. The intrinsic extinction toward GRB 080603A is high (A_V,z = 0.8 mag), and the well-sampled X-ray-to-near-infrared spectral energy distribution is interesting in requiring an LMC2 extinction profile, in contrast to the majority of GRBs. Comparison of the gamma-ray and extinction-corrected optical flux densities of the flash rules out an inverse-Compton origin for the prompt gamma-rays; instead, we suggest that the optical flash could originate from the inhomogeneity of the relativistic flow. In this scenario, a large velocity irregularity in the flow produces the prompt gamma-rays, followed by a milder internal shock at a larger radius that would cause the optical flash. Flat gamma-ray spectra, roughly F propto nu^-0.1, are observed in many GRBs. If the flat spectrum extends down to the optical band in GRB 080603A, the optical flare could be explained as the low-energy tail of the gamma-ray emission. If this is indeed the case, it provides an important clue to understanding the nature of the emission process in the prompt phase of GRBs and highlights the importance of deep (R> 20 mag), rapid follow-up observations capable of detecting faint, prompt optical emission.
We show that the light curve of the double GeV+optical flash in GRB 130427A is consistent with radiation from the blast wave in a wind-type medium with density parameter $A=rho r^2sim 5times 10^{10}$ g cm$^{-1}$. The peak of the flash is emitted by copious $e^pm$ pairs created and heated in the blast wave; our first-principle calculation determines the pair-loading factor and temperature of the shocked plasma. Using detailed radiative transfer simulations we reconstruct the observed double flash. The optical flash is dominated by synchrotron emission from the thermal plasma behind the forward shock, and the GeV flash is produced via inverse Compton (IC) scattering by the same plasma. The seed photons for IC scattering are dominated by the prompt MeV radiation during the first tens of seconds, and by the optical to X-ray afterglow thereafter. IC cooling of the thermal plasma behind the forward shock reproduces all GeV data from a few seconds to $sim 1$ day. We find that the blast wave Lorentz factor at the peak of the flash is $Gammaapprox 200$, and the forward shock magnetization is $epsilon_Bsim 2times 10^{-4}$. An additional source is required by the data in the optical and X-ray bands at times $>10^2$ s; we speculate that this additional source may be a long-lived reverse shock in the explosion ejecta.
After more than 40 years from their discovery, the long-lasting tension between predictions and observations of GRBs prompt emission spectra starts to be solved. We found that the observed spectra can be produced by the synchrotron process, if the emitting particles do not completely cool. Evidence for incomplete cooling was recently found in Swift GRBs spectra with prompt observations down to 0.5 keV (Oganesyan et al. 2017, 2018), characterized by an additional low-energy break. In order to search for this break at higher energies, we analysed the 10 long and 10 short brightest GRBs detected by the Fermi satellite in over 10 years of activity. We found that in 8/10 long GRBs there is compelling evidence of a low energy break (below the peak energy) and the photon indices below and above that break are remarkably consistent with the values predicted by the synchrotron spectrum (-2/3 and -3/2, respectively). None of the ten short GRBs analysed shows a break, but the low energy spectral slope is consistent with -2/3. Within the framework of the GRB standard model, these results imply a very low magnetic field in the emission region, at odds with expectations. I also present the spectral evolution of GRB 190114C, the first GRB detected with high significance by the MAGIC Telescopes, which shows the compresence (in the keV-MeV energy range) of the prompt and of the afterglow emission, the latter rising and dominating the high energy part of the spectral energy range.
We present observations of the dark Gamma-Ray Burst GRB 051008 provided by Swift/BAT, Swift/XRT, Konus-WIND, INTEGRAL/SPI-ACS in the high-energy domain and the Shajn, Swift/UVOT, Tautenburg, NOT, Gemini and Keck I telescopes in the optical and near-infrared bands. The burst was detected only in gamma- and X-rays and neither a prompt optical nor a radio afterglow were detected down to deep limits. We identified the host galaxy of the burst, which is a typical Lyman-break Galaxy (LBG) with R-magnitude of 24.06 +/- 0.10. A redshift of the galaxy of z = 2.77 (-0.20,+0.15) is measured photometrically due to the presence of a clear, strong Lyman-break feature. The host galaxy is a small starburst galaxy with moderate intrinsic extinction (A_V = 0.3 mag) and has a SFR of ~ 60 M_Sun / yr typical for LBGs. It is one of the few cases where a GRB host has been found to be a classical Lyman-break galaxy. Using the redshift we estimate the isotropic-equivalent radiated energy of the burst to be E_iso = (1.15 +/- 0.20) x 10^54 erg. We also provide evidence in favour of the hypothesis that the darkness of GRB 051008 is due to local absorption resulting from a dense circumburst medium.
We present and perform a detailed analysis of multi-wavelength observations of thisgrb, an optical bright GRB with an observed reverse shock (RS) signature. Observations of this GRB were acquired with the BOOTES-4 robotic telescope, the fermi, and the swift missions. Time-resolved spectroscopy of the prompt emission shows that changes to the peak energy (Ep) tracks intensity and the low-energy spectral index seems to follow the intensity for the first episode, whereas this tracking behavior is less clear during the second episode. The fit to the afterglow light curves shows that the early optical afterglow can be described with RS emission and is consistent with the thin shell scenario of the constant ambient medium. The late time afterglow decay is also consistent with the prediction of the external forward shock (FS) model. We determine the properties of the shocks, Lorentz factor, magnetization parameters, and ambient density of thisgrb, and compare these parameters with another 12 GRBs, consistent with having RS produced by thin shells in an ISM-like medium. The value of the magnetization parameter ($R_{rm B} approx 18$) indicates a moderately magnetized baryonic dominant jet composition for thisgrb. We also report the host galaxy photometric observations of thisgrb obtained with 10.4m GTC, 3.5m CAHA, and 3.6m DOT telescopes and find the host (photo $z$ = $2.8^{+0.7}_{-0.9}$) to be a high mass, star-forming galaxy with a star formation rate of $20 pm 10 msun$ $rm yr^{-1}$.
We present a comprehensive analysis of a bright, long duration (T90 ~ 257 s) GRB 110205A at redshift z= 2.22. The optical prompt emission was detected by Swift/UVOT, ROTSE-IIIb and BOOTES telescopes when the GRB was still radiating in the gamma-ray band. Nearly 200 s of observations were obtained simultaneously from optical, X-ray to gamma-ray, which makes it one of the exceptional cases to study the broadband spectral energy distribution across 6 orders of magnitude in energy during the prompt emission phase. By fitting the time resolved prompt spectra, we clearly identify, for the first time, an interesting two-break energy spectrum, roughly consistent with the standard GRB synchrotron emission model in the fast cooling regime. Although the prompt optical emission is brighter than the extrapolation of the best fit X/gamma-ray spectra, it traces the gamma-ray light curve shape, suggesting a relation to the prompt high energy emission. The synchrotron + SSC scenario is disfavored by the data, but the models invoking a pair of internal shocks or having two emission regions can interpret the data well. Shortly after prompt emission (~ 1100 s), a bright (R = 14.0) optical emission hump with very steep rise (alpha ~ 5.5) was observed which we interpret as the emission from the reverse shock. It is the first time that the rising phase of a reverse shock component has been closely observed. The full optical and X-ray afterglow lightcurves can be interpreted within the standard reverse shock (RS) + forward shock (FS) model. In general, the high quality prompt emission and afterglow data allow us to apply the standard fireball shock model to extract valuable information about the GRB including the radiation mechanism, radius of prompt emission R, initial Lorentz factor of the outflow, the composition of the ejecta, as well as the collimation angle and the total energy budget.