Do you want to publish a course? Click here

Electronic structure of solid coronene: differences and commonalities to picene

188   0   0.0 ( 0 )
 Added by Taichi Kosugi
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have obtained the first-principles electronic structure of solid coronene, which has been recently discovered to exhibit superconductivity with potassium doping. Since coronene, along with picene, the first aromatic superconductor, now provide a class of superconductors as solids of aromatic compounds, here we compare the two cases in examining the electronic structures. In the undoped coronene crystal, where the molecules are arranged in a herringbone structure with two molecules in a unit cell, the conduction band above an insulating gap is found to comprise four bands, which basically originate from the lowest two unoccupied molecular orbitals (doubly-degenerate, reflecting the high symmetry of the molecular shape) in an isolated molecule but the bands are entangled as in solid picene. The Fermi surface for a candidate of the structure of K$_x$coronene with $x=3$, for which superconductivity is found, comprises multiple sheets, as in doped picene but exhibiting a larger anisotropy with different topology.

rate research

Read More

To explore the electronic structure of the first aromatic superconductor, potassium-doped solid picene which has been recently discovered by Mitsuhashi et al with the transition temperatures $T_c=7 - 20$ K, we have obtained a first-principles electronic structure of solid picene as a first step toward the elucidation of the mechanism of the superconductivity. The undoped crystal is found to have four conduction bands, which are characterized in terms of the maximally localized Wannier orbitals. We have revealed how the band structure reflects the stacked arrangement of molecular orbitals for both undoped and doped (K$_3$picene) cases, where the bands are not rigid. The Fermi surface for K$_3$picene is a curious composite of a warped two-dimensional surface and a three-dimensional one.
Recently, a new organic superconductor, K-intercalated Picene with high transition temperatures $T_c$ (up to 18,K) has been discovered. We have investigated the electronic properties of the undoped relative, solid picene, using a combination of experimental and theoretical methods. Our results provide detailed insight into the occuopied and unoccupied electronic states.
We report a corrected crystal structure for the CePt2In7 superconductor, refined from single crystal x-ray diffraction data. The corrected crystal structure shows a different Pt-In stacking along the c-direction in this layered material than was previously reported. In addition, all the atomic sites are fully occupied with no evidence of atom site mixing, resolving a discrepancy between the observed high resistivity ratio of the material and the atomic disorder present in the previous structural model The Ce-Pt distance and coordination is typical of that seen in all other reported Ce_nM_mIn_3n+2m compounds. Our band structure calculations based on the correct structure reveal three bands at the Fermi level that are more three dimensional than those previously proposed, and Density functional theory (DFT) calculations show that the new structure has a significantly lower energy.
We report comprehensive study of physical properties of the binary superconductor compound SnAs. The electronic band structure of SnAs was investigated using both angle-resolved photoemission spectroscopy (ARPES) in a wide binding energy range and density functional theory (DFT) within generalized gradient approximation (GGA). The DFT/GGA calculations were done including spin-orbit coupling for both bulk and (111) slab crystal structures. Comparison of the DFT/GGA band dispersions with ARPES data shows that (111) slab much better describes ARPES data than just bulk bands. Superconducting properties of SnAs were studied experimentally by specific heat, magnetic susceptibility, magnetotransport measurements and Andreev reflection spectroscopy. Temperature dependences of the superconducting gap and of the specific heat were found to be well consistent with those expected for the single band BCS superconductors with an isotropic s-wave order parameter. Despite spin-orbit coupling is present in SnAs, our data shows no signatures of a potential unconventional superconductivity, and the characteristic BCS ratio $2Delta/T_c = 3.48 - 3.73$ is very close to the BCS value in the weak coupling limit.
We study the electronic and lattice dynamical properties of compressed solid germane in the pressure range up to 200 GPa with density functional theory. A stable metallic structure, Aba2, with a base-centered orthorhombic symmetry was found to be the lowest enthalpy phase for pressure from 23 to 177 GPa, suggesting an insulator to metal phase transition around 23 GPa. The Aba2 structure is predicted to have higher superconducting transition temperature than SiH4 reported recently, thus presenting new possibilities for exploring high temperature superconductivity in this hydrogen-rich system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا