Do you want to publish a course? Click here

The Super-linear Slope of the Spatially-Resolved Star Formation Law in NGC 3521 and NGC 5194 (M51a)

190   0   0.0 ( 0 )
 Added by Guilin Liu
 Publication date 2011
  fields Physics
and research's language is English
 Authors Guilin Liu




Ask ChatGPT about the research

We have conducted interferometric observations with CARMA and an OTF mapping with the 45-m telescope at NRO in the CO (J=1-0) emission line of NGC 3521. Combining these new data, together with CARMA+NRO45 data for M51a and archival SINGS H$alpha$, 24$mu$m, THINGS H I and GALEX FUV data for both galaxies, we investigate the empirical scaling law that connects the surface density of SFR and cold gas (the Schmidt-Kennicutt law) on a spatially-resolved basis. We argue that plausibly deriving SFR maps of nearby galaxies requires the diffuse stellar/dust background emission to be carefully subtracted. An approach to complete this task is presented and applied in our pixel-by-pixel analysis on both galaxies, showing that the controversial results whether the molecular S-K law is super-linear or basically linear is a result of removing or preserving the local background. In both galaxies, the power index of the molecular S-K law is 1.5-1.9 at the highest available resolution (230 pc), and decreases monotonically for decreasing resolution; while the scatter (mainly intrinsic) increases as the resolution becomes higher, indicating a trend for which the S-K law breaks down below some scale. Both quantities are systematically larger in M51a than in NGC 3521, but when plotted against the de-projected scale (delta_{dp}), they become highly consistent between the two galaxies, tentatively suggesting that the sub-kpc molecular S-K law in spiral galaxies depends only on the considered scale, without varying amongst spiral galaxies. A logarithmic function gamma_{H_2}=-1.1 log[delta_{dp}/kpc]+1.4 and a linear relation sigma_{H_2}=-0.2 [delta_{dp}/kpc]+0.7 are obtained through fitting to the M51a data, which describes both galaxies impressively well on sub-kpc scales. A larger sample of galaxies with better quality data are required to test the general applicability of these relations.



rate research

Read More

A pixel analysis is carried out on the interacting face-on spiral galaxy NGC 5194 (M51A), using the HST/ACS images in the F435W, F555W and F814W (BVI) bands. After 4x4 binning of the HST/ACS images to secure a sufficient signal-to-noise ratio for each pixel, we derive several quantities describing the pixel color-magnitude diagram (pCMD) of NGC 5194: blue/red color cut, red pixel sequence parameters, blue pixel sequence parameters and blue-to-red pixel ratio. The red sequence pixels are mostly older than 1 Gyr, while the blue sequence pixels are mostly younger than 1 Gyr, in their luminosity-weighted mean stellar ages. The color variation in the red pixel sequence from V = 20 mag arcsec^(-2) to V = 17 mag arcsec^(-2) corresponds to a metallicity variation of Delta[Fe/H] ~ 2 or an optical depth variation of Deltatau_V ~ 4 by dust, but the actual sequence is thought to originate from the combination of those two effects. At V < 20 mag arcsec^(-2), the color variation in the blue pixel sequence corresponds to an age variation from 5 Myr to 300 Myr under the assumption of solar metallicity and tau_V = 1. To investigate the spatial distributions of stellar populations, we divide pixel stellar populations using the pixel color-color diagram and population synthesis models. As a result, we find that the pixel population distributions across the spiral arms agree with a compressing process by spiral density waves: dense dust rightarrow newly-formed stars. The tidal interaction between NGC 5194 and NGC 5195 appears to enhance the star formation at the tidal bridge connecting the two galaxies. We find that the pixels corresponding to the central active galactic nucleus (AGN) area of NGC 5194 show a tight sequence at the bright-end of the pCMD, which are in the region of R ~ 100 pc and may be a photometric indicator of AGN properties.
We present the results of CO(J=3-2) on-the-fly mappings of two nearby non-barred spiral galaxies NGC 628 and NGC 7793 with the Atacama Submillimeter Telescope Experiment at an effective angular resolution of 25. We successfully obtained global distributions of CO(J=3-2) emission over the entire disks at a sub-kpc resolution for both galaxies. We examined the spatially-resolved (sub-kpc) relationship between CO(J=3-2) luminosities (LCO(3-2)) and infrared (IR) luminosities (LIR) for NGC 628, NGC 7793, and M 83, and compared it with global luminosities of JCMT Nearby Galaxy Legacy Survey sample. We found a striking linear LCO(3-2)-LIR correlation over the 4 orders of magnitude, and the correlation is consistent even with that for ultraluminous infrared galaxies and submillimeter selected galaxies. In addition, we examined the spatially-resolved relationship between CO(J=3-2) intensities (ICO(3-2)) and extinction-corrected star formation rates (SFRs) for NGC 628, NGC 7793, and M 83, and compared it with that for GMCs in M 33 and 14 nearby galaxy centers. We found a linear ICO(3-2)-SFR correlation with 1 dex scatter. We conclude that the CO(J=3-2) star formation law (i.e., linear LCO(3-2)-LIR and ICO(3-2)-SFR correlations) is universally applicable to various types and spatial scales of galaxies, from spatially-resolved nearby galaxy disks to distant IR-luminous galaxies, within 1 dex scatter.
We present a detailed study of the Magellanic irregular galaxy NGC 4449 based on both archival and new photometric data from the Legacy Extragalactic UV Survey, obtained with the Hubble Space Telescope Advanced Camera for Surveys and Wide Field Camera 3. Thanks to its proximity ($D=3.82pm 0.27$ Mpc) we reach stars 3 magnitudes fainter than the tip of the red giant branch in the F814W filter. The recovered star formation history spans the whole Hubble time, but due to the age-metallicity degeneracy of the red giant branch stars, it is robust only over the lookback time reached by our photometry, i.e. $sim 3$ Gyr. The most recent peak of star formation is around 10 Myr ago. The average surface density star formation rate over the whole galaxy lifetime is $0.01$ M$_{odot}$ yr$^{-1}$ kpc$^{-2}$. From our study it emerges that NGC 4449 has experienced a fairly continuous star formation regime in the last 1 Gyr with peaks and dips whose star formation rates differ only by a factor of a few. The very complex and disturbed morphology of NGC 4449 makes it an interesting galaxy for studies of the relationship between interactions and starbursts, and our detailed and spatially resolved analysis of its star formation history does indeed provide some hints on the connection between these two phenomena in this peculiar dwarf galaxy.
We have obtained the time and space-resolved star formation history (SFH) of M51a (NGC 5194) by fitting GALEX, SDSS, and near infrared pixel-by-pixel photometry to a comprehensive library of stellar population synthesis models drawn from the Synthetic Spectral Atlas of Galaxies (SSAG). We fit for each space-resolved element (pixel) an independent model where the SFH is averaged in 137 age bins, each one 100 Myr wide. We used the Bayesian Successive Priors (BSP) algorithm to mitigate the bias in the present-day spatial mass distribution. We test BSP with different prior probability distribution functions (PDFs); this exercise suggests that the best prior PDF is the one concordant with the spatial distribution of the stellar mass as inferred from the near infrared images. We also demonstrate that varying the implicit prior PDF of the SFH in SSAG does not affects the results. By summing the contributions to the global star formation rate of each pixel, at each age bin, we have assembled the resolved star formation history of the whole galaxy. According to these results, the star formation rate of M51a was exponentially increasing for the first 10 Gyr after the Big Bang, and then turned into an exponentially decreasing function until the present day. Superimposed, we find a main burst of star formation at t 11.9 Gyr after the Big Bang.
We present Integral Field Spectroscopy (IFS) of NGC 595, one of the most luminous HII regions in M33. This type of observations allows studying the variation of the principal emission-line ratios across the surface of the nebula. At each position of the field of view, we fit the main emission-line features of the spectrum within the spectral range 3650-6990A, and create maps of the principal emission-line ratios for the total surface of the region. The extinction map derived from the Balmer decrement and the absorbed H-alpha luminosity show good spatial correlation with the 24 micron emission from Spitzer. We also show here the capability of the IFS to study the existence of Wolf-Rayet (WR) stars, identifying the previously catalogued WR stars and detecting a new candidate towards the north of the region. The ionization structure of the region nicely follows the H-alpha shell morphology and is clearly related to the location of the central ionizing stars. The electron density distribution does not show strong variations within the HII region nor any trend with the H-alpha emission distribution. We study the behaviour within the HII region of several classical emission-line ratios proposed as metallicity calibrators: while [NII]/Ha and [NII]/[OIII] show important variations, the R23 index is substantially constant across the surface of the nebula, despite the strong variation of the ionization parameter as a function of the radial distance from the ionizing stars. These results show the reliability in using the R23 index to characterize the metallicity of HII regions even when only a fraction of the total area is covered by the observations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا