Through experimental study, we reveal superlubricity as the mechanism of self-retracting motion of micrometer sized graphite flakes on graphite platforms by correlating respectively the lock-up or self-retraction states with the commensurate or incommensurate contacts. We show that the scale-dependent loss of self-retractability is caused by generation of contact interfacial defects. A HOPG structure is also proposed to understand our experimental observations, particularly in term of the polycrystal structure. The realisation of the superlubricity in micrometer scale in our experiments will have impact in the design and fabrication of micro/nanoelectromechanical systems based on graphitic materials.