Do you want to publish a course? Click here

Minimum $L^infty$ Accelerations in Riemannian Manifolds

143   0   0.0 ( 0 )
 Added by Lyle Noakes
 Publication date 2011
  fields
and research's language is English
 Authors Lyle Noakes




Ask ChatGPT about the research

Riemannian cubics are critical points for the $L^2$ norm of acceleration of curves in Riemannian manifolds $M$. In the present paper the $L^infty$ norm replaces the $L^2$ norm, and a less direct argument is used to derive necessary conditions analogous to those for Riemannian cubics. The necessary conditions are examined when $M$ is a sphere or a bi-invariant Lie group.



rate research

Read More

180 - C. A. Morales , M. Vilches 2012
A {em 2-Riemannian manifold} is a differentiable manifold exhibiting a 2-inner product on each tangent space. We first study lower dimensional 2-Riemannian manifolds by giving necessary and sufficient conditions for flatness. Afterward we associate to each 2-Riemannian manifold a unique torsion free compatible pseudoconnection. Using it we define a curvature for 2-Riemannian manifolds and study its properties. We also prove that 2-Riemannian pseudoconnections do not have Koszul derivatives. Moreover, we define stationary vector field with respect to a 2-Riemannian metric and prove that the stationary vector fields in $mathbb{R}^2$ with respect to the 2-Riemannian metric induced by the Euclidean product are the divergence free ones.
In this paper, by using monotonicity formulas for vector bundle-valued $p$-forms satisfying the conservation law, we first obtain general $L^2$ global rigidity theorems for locally conformally flat (LCF) manifolds with constant scalar curvature, under curvature pinching conditions. Secondly, we prove vanishing results for $L^2$ and some non-$L^2$ harmonic $p$-forms on LCF manifolds, by assuming that the underlying manifolds satisfy pointwise or integral curvature conditions. Moreover, by a Theorem of Li-Tam for harmonic functions, we show that the underlying manifold must have only one end. Finally, we obtain Liouville theorems for $p$-harmonic functions on LCF manifolds under pointwise Ricci curvature conditions.
112 - Ludovic Sacchelli 2018
We study the sub-Riemannian exponential for contact distributions on manifolds of dimension greater or equal to 5. We compute an approximation of the sub-Riemannian Hamiltonian flow and show that the conjugate time can have multiplicity 2 in this case. We obtain an approximation of the first conjugate locus for small radii and introduce a geometric invariant to show that the metric for contact distributions typically exhibits an original behavior, different from the classical 3-dimensional case. We apply these methods to the case of 5-dimensional contact manifolds. We provide a stability analysis of the sub-Riemannian caustic from the Lagrangian point of view and classify the singular points of the exponential map.
405 - Paola Piu , Elisabeth Remm 2012
Flag manifolds are in general not symmetric spaces. But they are provided with a structure of $mathbb{Z}_2^k$-symmetric space. We describe the Riemannian metrics adapted to this structure and some properties of reducibility. We detail for the flag manifold $SO(5)/SO(2)times SO(2) times SO(1)$ what are the conditions for a metric adapted to the $mathbb{Z}_2^2$-symmetric structure to be naturally reductive.
We quantify conditions that ensure that a signed measure on a Riemannian manifold has a well defined centre of mass. We then use this result to quantify the extent of a neighbourhood on which the Riemannian barycentric coordinates of a set of $n+1$ points on an $n$-manifold provide a true coordinate chart, i.e., the barycentric coordinates provide a diffeomorphism between a neighbourhood of a Euclidean simplex, and a neighbourhood containing the points on the manifold.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا