No Arabic abstract
Extragalactic Planetary Nebulae (PNe) are not only useful as distance signposts or as tracers of the dark-matter content of their host galaxies, but constitute also good indicators of the main properties of their parent stellar populations. Yet, so far, the properties of PNe in the optical regions of galaxies where stellar population gradients can be more extreme have remained largely unexplored, mainly because the detection of PNe with narrow-band imaging or slit-less spectroscopy is considerably hampered by a strong stellar background. Integral-field spectroscopy (IFS) can overcome this limitation, and here we present a study of the PN population in the nearby compact elliptical M32. Using SAURON data taken with just two 10-minutes-long pointings we have doubled the number of known PNe within the effective radius of M32, detecting PNe five times fainter than previously found in narrow-band images that collected nearly the same number of photons. Furthermore, by carefully accounting for the incompleteness of our survey we could conclude, despite having only 15 sources, that the central PNe population of M32 is consistent with the generally adopted shape for the PNe Luminosity Function and its typical normalization observed in early-type galaxies. Finally, owing to the proximity of M32 and to UV images taken with HST, we could identify the most likely candidates for the central star of a subset of our detected PNe and conclude that these stars are affected by substantial amounts of circumstellar dust extinction, a finding that could reconcile the intriguing discrepancy previously reported in M32 between model predictions and observations for the later stages of stellar evolution. Considering the modest time investment on a 4m-class telescope that delivered these results, this work illustrates the potential of future IFS studies for the central PNe population of early-type galaxies.
We present spectroscopy of nine planetary nebulae (PNe) in the outskirts of M31, all but one obtained with the 10.4m GTC telescope. These sources extend our previous study of the oxygen abundance gradient of M31 to galactocentric radii as large as 100 kpc. None of the targets are bona fide members of a classical, metal-poor and ancient halo. Two of the outermost PNe have solar oxygen abundances, as well as radial velocities consistent with the kinematics of the extended disk of M31. The other PNe have a slightly lower oxygen content ([O/H] ~ -0.4) and in some cases large deviations from the disk kinematics. These PNe support the current view that the external regions of M31 are the result of a complex interaction and merger process, with evidence for a widespread population of solar-metallicity stars produced in a starburst that occurred ~2 Gyr ago.
The evolution of central stars of planetary nebulae was so far documented in just a few cases. However, spectra collected a few decades ago may provide a good reference for studying the evolution of central stars using the emission line fluxes of their nebulae. We investigated evolutionary changes of the [OIII] 5007 A line flux in the spectra of planetary nebulae. We compared nebular fluxes collected during a decade or longer. We used literature data and newly obtained spectra. A grid of Cloudy models was computed using existing evolutionary models, and the models were compared with the observations. An increase of the [OIII] 5007 A line flux is frequently observed in young planetary nebulae hosting H-rich central stars. The increasing nebular excitation is the response to the increasing temperature and hardening radiation of the central stars. We did not observe any changes in the nebular fluxes in the planetary nebulae hosting late-type Wolf-Rayet (WR) central stars. This may indicate a slower temperature evolution (which may stem from a different evolutionary status) of late-[WR] stars. In young planetary nebulae with H-rich central stars, the evolution can be followed using optical spectra collected during a decade or longer. The observed evolution of H-rich central stars is consistent with the predictions of the evolutionary models provided in the literature. Late-[WR] stars possibly follow a different evolutionary path.
We present X-ray spectral analysis of 20 point-like X-ray sources detected in Chandra Planetary Nebula Survey (ChanPlaNS) observations of 59 planetary nebulae (PNe) in the solar neighborhood. Most of these 20 detections are associated with luminous central stars within relatively young, compact nebulae. The vast majority of these point-like X-ray-emitting sources at PN cores display relatively hard ($geq0.5$~keV) X-ray emission components that are unlikely to be due to photospheric emission from the hot central stars (CSPN). Instead, we demonstrate that these sources are well modeled by optically-thin thermal plasmas. From the plasma properties, we identify two classes of CSPN X-ray emission: (1) high-temperature plasmas with X-ray luminosities, $L_{rm X}$, that appear uncorrelated with the CSPN bolometric luminosity, $L_{rm bol}$; and (2) lower-temperature plasmas with $L_{rm X}/L_{rm bol}sim10^{-7}$. We suggest these two classes correspond to the physical processes of magnetically active binary companions and self-shocking stellar winds, respectively. In many cases this conclusion is supported by corroborative multiwavelength evidence for the wind and binary properties of the PN central stars. By thus honing in on the origins of X-ray emission from PN central stars, we enhance the ability of CSPN X-ray sources to constrain models of PN shaping that invoke wind interactions and binarity.
During the past 20 years, the idea that non-spherical planetary nebulae (PN) may need a binary or planetary interaction to be shaped was discussed by various authors. It is now generally agreed that the varied morphologies of PN cannot be fully explained solely by single star evolution. Observationally, more binary central stars of planetary nebulae (CSPN) have been discovered, opening new possibilities to understand the connections between binarity and morphology. So far, simeq 45 binary CSPN have been detected, most being close systems detected via flux variability. To determine the PN binary fraction, one needs a method to detect wider binaries. We present here recent results obtained with the various techniques described, concentrating on binary infrared excess observations aimed at detecting binaries of any separation.
Thanks to SAURON integral-field observations we uncovered the Planetary Nebulae (PNe) populations inhabiting the central and nuclear regions of our galactic neighbours M32 and M31, respectively, and discuss the significant differences between their corresponding PNe luminosity functions in light of the properties of their parent stellar populations. In particular, we conclude that the lack of bright PNe in the nuclear regions of M31 is likely linked to the nearly Solar value for the stellar metallicity, consistent with previous suggestions that a larger metallicity would bias the Horizontal-Branch (HB) populations toward bluer colors, with fewer red HB stars capable of producing PNe and more blue HB stars that instead could contribute to the far-UV flux that is observed in metal-rich early-type galaxies and, incidentally, also in the nucleus of M31.