Do you want to publish a course? Click here

Critical properties of the half-filled Hubbard model in three dimensions

186   0   0.0 ( 0 )
 Added by Alessandro Toschi
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

By means of the dynamical vertex approximation (D$Gamma$A) we include spatial correlations on all length scales beyond the dynamical mean field theory (DMFT) for the half-filled Hubbard model in three dimensions. The most relevant changes due to non-local fluctuations are: (i) a deviation from the mean-field critical behavior with the same critical exponents as for the three dimensional Heisenberg (anti)-ferromagnet and (ii) a sizable reduction of the Neel temperature ($T_N$) by $sim 30%$ for the onset of antiferromagnetic order. Finally, we give a quantitative estimate of the deviation of the spectra between D$Gamma$A and DMFT in different regions of the phase-diagram.



rate research

Read More

303 - I. Hagymasi , K. Itai , J. Solyom 2012
Two very different methods -- exact diagonalization on finite chains and a variational method -- are used to study the possibility of a metal-insulator transition in the symmetric half-filled periodic Anderson-Hubbard model. With this aim we calculate the density of doubly occupied $d$ sites as a function of various parameters. In the absence of on-site Coulomb interaction ($U_f$) between $f$ electrons, the two methods yield similar results. The double occupancy of $d$ levels remains always finite just as in the one-dimensional Hubbard model. Exact diagonalization on finite chains gives the same result for finite $U_f$, while the Gutzwiller method leads to a Brinkman-Rice transition at a critical value ($U_d^c$), which depends on $U_f$ and $V$.
165 - Soumen Bag , Arti Garg , 2015
We study the phase diagram of the ionic Hubbard model (IHM) at half-filling using dynamical mean field theory (DMFT), with two impurity solvers, namely, iterated perturbation theory (IPT) and continuous time quantum Monte Carlo (CTQMC). The physics of the IHM is governed by the competition between the staggered potential $Delta$ and the on-site Hubbard U. In both the methods we find that for a finite $Delta$ and at zero temperature, anti-ferromagnetic (AFM) order sets in beyond a threshold $U=U_{AF}$ via a first order phase transition below which the system is a paramagnetic band insulator. Both the methods show a clear evidence for a transition to a half-metal phase just after the AFM order is turned on, followed by the formation of an AFM insulator on further increasing U. We show that the results obtained within both the methods have good qualitative and quantitative consistency in the intermediate to strong coupling regime. On increasing the temperature, the AFM order is lost via a first order phase transition at a transition temperature $T_{AF}(U, Delta)$ within both the methods, for weak to intermediate values of U/t. But in the strongly correlated regime, where the effective low energy Hamiltonian is the Heisenberg model, IPT is unable to capture the thermal (Neel) transition from the AFM phase to the paramagnetic phase, but the CTQMC does. As a result, at any finite temperature T, DMFT+CTQMC shows a second phase transition (not seen within DMFT+IPT) on increasing U beyond $U_{AF}$. At $U_N > U_{AF}$, when the Neel temperature $T_N$ for the effective Heisenberg model becomes lower than T, the AFM order is lost via a second order transition. In the 3-dimensonal parameter space of $(U/t,T/t,Delta/t)$, there is a line of tricritical points that separates the surfaces of first and second order phase transitions.
Using a self-consistent Hartree-Fock approximation we investigate the relative stability of various stripe phases in the extended $t$-$t$-$U$ Hubbard model. One finds that a negative ratio of next- to nearest-neighbor hopping $t/t<0$ expells holes from antiferromagnetic domains and reinforces the stripe order. Therefore the half-filled stripes not only accommodate holes but also redistribute them so that the kinetic energy is gained, and these stripes take over in the regime of $t/tsimeq -0.3$ appropriate for YBa$_2$Cu$_3$O$_{6+delta}$.
We show that, by an appropriate choice of auxiliary fields and exact integration of the phonon degrees of freedom, it is possible to define a sign-free path integral for the so called Hubbard-Holstein model at half-filling. We use a statistical method, based on an accelerated and efficient Langevin dynamics, for evaluating all relevant correlation functions of the model. Preliminary calculations at $U/t=4$ and $U/t=1$, for $omega_0/t=1$, indicate a quite extended region around $U simeq {g^2 over omega_0}$ without either antiferromagnetic or charge-density-wave orders, separating two quantum critical points at zero temperature. The elimination of the sign problem in a model without explicit particle-hole symmetry may open new perspectives for strongly correlated models, even away from the purely attractive or particle-hole symmetric cases.
We investigate the ionic Hubbard model (IHM) at half-filling in the limit of strong correlations and large ionic potential. The low energy effective Hamiltonian in this limit, obtained by a similarity transformation, is a modified $t-J$ model with effective second neighbour hopping terms. We explore the possibilities of d-wave pairing and extended s-wave pairing superconducting (SC) phases on a two dimensional square lattice at zero temperature within a Gutzwiller projected renormalized mean field theory. In the sector of solutions that forbid spin ordering, the system shows a finite non-zero d-wave as well as extended s-wave pairing amplitude for $Delta sim U gg t$. The width of the superconducting phase in $U-Delta$ regime shrinks with increase in $U$ and $Delta$, though the extended s-wave pairing phase is higher in energy than the d-wave pairing superconducting phase. But in a spin resolved renormalized mean field calculation, which allows for an antiferromagnetic (AF) order along with the d-wave or extended s-wave pairing, the SC phase is no longer viable and the system shows a direct transition from an AF ordered phase to a paramagnetic band insulator. Except for a thin sliver of a half-metallic AF phase close to the AF transition point, most of the AF ordered phase is a Mott insulator. We benchmarked the AF Mott insulator to band insulator transition within the Gutzwiller projected renormalized mean field theory against the dynamical mean field theory (DMFT) solved using continuous time quantum Monte-Carlo (CTQMC). Our work suggests that the ground state phase diagram of the IHM at half-filling in the limit of extreme correlations does not have any SC phase. The SC phase seen in the paramagnetic sector is a metastable phase, being higher in energy than the AF Mott insulator phase.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا