Do you want to publish a course? Click here

Quantum Gates Between Two Spins in a Triple Dot System with an Empty Dot

166   0   0.0 ( 0 )
 Added by Sougato Bose
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a scheme for implementing quantum gates and entanglement between spin qubits in the outer dots of a triple-dot system with an empty central dot. The voltage applied to the central dot can be tuned to realize the gate. Our scheme exemplifies the possibility of quantum gates outside the regime where each dot has an electron, so that spin-spin exchange interaction is not the only relevant mechanism. Analytic treatment is possible by mapping the problem to a t-J model. The fidelity of the entangling quantum gate between the spins is analyzed in the presence of decoherence stemming from a bath of nuclear spins, as well as from charge fluctuations. Our scheme provides an avenue for extending the scope of two qubit gate experiments to triple-dots, while requiring minimal control, namely that of the potential of a single dot, and may enhance the qubit separation to ease differential addressability.



rate research

Read More

110 - H. Sasakura , S. Muto 1999
Quantum computation using electron spins in three coupled dot with different size is proposed. By using the energy selectivity of both photon assisted tunneling and spin rotation of electrons, logic gates are realized by static and rotational magnetic field and resonant optical pulses. Possibility of increasing the number of quantum bits using the energy selectivity is also discussed.
We theoretically investigate electron spin operations driven by applied electric fields in a semiconductor double quantum dot (DQD). Our model describes a DQD formed in semiconductor nanowire with longitudinal potential modulated by local gating. The eigenstates for two electron occupation, including spin-orbit interaction, are calculated and then used to construct a model for the charge transport cycle in the DQD taking into account the spatial dependence and spin mixing of states. The dynamics of the system is simulated aiming at implementing protocols for qubit operations, that is, controlled transitions between the singlet and triplet states. In order to obtain fast spin manipulation, the dynamics is carried out taking advantage of the anticrossings of energy levels introduced by the spin-orbit and interdot couplings. The theory of optimal quantum control is invoked to find the specific electric-field driving that performs qubit logical operations. We demonstrate that it is possible to perform within high efficiency a universal set of quantum gates ${$CNOT, H$otimes$I, I$otimes$H, T$otimes$I, and T$otimes$I$}$, where H is the Hadamard gate, T is the $pi/8$ gate, and I is the identity, even in the presence of a fast charge transport cycle and charge noise effects.
A two-qubit controlled-NOT (CNOT) gate, realized by a controlled-phase (C-phase) gate combined with single-qubit gates, has been experimentally implemented recently for quantum-dot spin qubits in isotopically enriched silicon, a promising solid-state system for practical quantum computation. In the experiments, the single-qubit gates have been demonstrated with fault-tolerant control-fidelity, but the infidelity of the two-qubit C-phase gate is, primarily due to the electrical noise, still higher than the required error threshold for fault-tolerant quantum computation (FTQC). Here, by taking the realistic system parameters and the experimental constraints on the control pulses into account, we construct experimentally realizable high-fidelity CNOT gates robust against electrical noise with the experimentally measured $1/f^{1.01}$ noise spectrum and also against the uncertainty in the interdot tunnel coupling amplitude. Our optimal CNOT gate has about two orders of magnitude improvement in gate infidelity over the ideal C-phase gate constructed without considering any noise effect. Furthermore, within the same control framework, high-fidelity and robust single-qubit gates can also be constructed, paving the way for large-scale FTQC.
The electronic spin degrees of freedom in semiconductors typically have decoherence times that are several orders of magnitude longer than other relevant timescales. A solid-state quantum computer based on localized electron spins as qubits is therefore of potential interest. Here, a scheme that realizes controlled interactions between two distant quantum dot spins is proposed. The effective long-range interaction is mediated by the vacuum field of a high finesse microcavity. By using conduction-band-hole Raman transitions induced by classical laser fields and the cavity-mode, parallel controlled-not operations and arbitrary single qubit rotations can be realized. Optical techniques can also be used to measure the spin-state of each quantum dot.
Quantum computation requires qubits that satisfy often-conflicting criteria, including scalable control and long-lasting coherence. One approach to creating a suitable qubit is to operate in an encoded subspace of several physical qubits. Though such encoded qubits may be particularly susceptible to leakage out of their computational subspace, they can be insensitive to certain noise processes and can also allow logical control with a single type of entangling interaction while maintaining favorable features of the underlying physical system. Here we demonstrate a qubit encoded in a subsystem of three coupled electron spins confined in gated, isotopically enhanced silicon quantum dots. Using a modified blind randomized benchmarking protocol that determines both computational and leakage errors, we show that unitary operations have an average total error of 0.35%, with 0.17% of that coming from leakage driven by interactions with substrate nuclear spins. This demonstration utilizes only the voltage-controlled exchange interaction for qubit manipulation and highlights the operational benefits of encoded subsystems, heralding the realization of high-quality encoded multi-qubit operations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا