Ultraviolet Continuum Color Variability of Luminous Sloan Digital Sky Survey QSOs


Abstract in English

We examine whether the spectral energy distribution of UV continuum emission of active galactic nuclei changes during flux variation. We used multi-epoch photometric data of QSOs in the Stripe 82 observed by the SDSS Legacy Survey and selected 10 bright QSOs observed with high photometric accuracies, in the redshift range of z = 1.0-2.4 where strong broad emission lines such as Lyalpha and CIV do not contaminate SDSS filters, to examine spectral variation of the UV continuum emission with broadband photometries. All target QSOs showed clear flux variations during the monitoring period 1998-2007, and the multi-epoch flux data in two different bands obtained on the same night showed a linear flux-to-flux relationship for all target QSOs. Assigning the flux in the longer wavelength to the x-axis in the flux-to-flux diagram, the x-intercept of the best-fit linear regression line was positive for most targets, which means that their colors in the observing bands become bluer as they become brighter. Then, the host-galaxy flux was estimated on the basis of the correlation between the stellar mass of the bulge of the host galaxy and the central black hole mass. We found that the longer-wavelength flux of the host galaxy was systematically smaller than that of the fainter extension of the best-fit regression line at the same shorter-wavelength flux for most targets. This result strongly indicates that the spectral shape of the continuum emission of QSOs in the UV region usually becomes bluer as it becomes brighter. We found that the multi-epoch flux-to-flux plots could be fitted well with the standard accretion disk model changing the mass accretion rate with a constant black hole mass for most targets. This finding strongly supports the standard accretion disk model for UV continuum emission of QSOs.

Download