Do you want to publish a course? Click here

Preparation of Kepler lightcurves for asteroseismic analyses

107   0   0.0 ( 0 )
 Added by Rafael A. Garcia
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Kepler mission is providing photometric data of exquisite quality for the asteroseismic study of different classes of pulsating stars. These analyses place particular demands on the pre-processing of the data, over a range of timescales from minutes to months. Here, we describe processing procedures developed by the Kepler Asteroseismic Science Consortium (KASC) to prepare light curves that are optimized for the asteroseismic study of solar-like oscillating stars in which outliers, jumps and drifts are corrected.



rate research

Read More

The NASA Kepler mission has observed more than 190,000 stars in the constellations of Cygnus and Lyra. Around 4 years of almost continuous ultra high-precision photometry have been obtained reaching a duty cycle higher than 90% for many of these stars. However, almost regular gaps due to nominal operations are present in the light curves at different time scales. In this paper we want to highlight the impact of those regular gaps in asteroseismic analyses and we try to find a method that minimizes their effect in the frequency domain. To do so, we isolate the two main time scales of quasi regular gaps in the data. We then interpolate the gaps and we compare the power density spectra of four different stars: two red giants at different stages of their evolution, a young F-type star, and a classical pulsator in the instability strip. The spectra obtained after filling the gaps in the selected solar-like stars show a net reduction in the overall background level, as well as a change in the background parameters. The inferred convective properties could change as much as 200% in the selected example, introducing a bias in the p-mode frequency of maximum power. When global asteroseismic scaling relations are used, this bias can lead up to a variation in the surface gravity of 0.05 dex. Finally, the oscillation spectrum in the classical pulsator is cleaner compared to the original one.
229 - R. Handberg , M. N. Lund 2014
One of the tasks of the Kepler Asteroseismic Science Operations Center (KASOC) is to provide asteroseismic analyses on Kepler Objects of Interest (KOIs). However, asteroseismic analysis of planetary host stars presents some unique complications with respect to data preprocessing, compared to pure asteroseismic targets. If not accounted for, the presence of planetary transits in the photometric time series often greatly complicates or even hinders these asteroseismic analyses. This drives the need for specialised methods of preprocessing data to make them suitable for asteroseismic analysis. In this paper we present the KASOC Filter, which is used to automatically prepare data from the Kepler/K2 mission for asteroseismic analyses of solar-like planet host stars. The methods are very effective at removing unwanted signals of both instrumental and planetary origins and produce significantly cleaner photometric time series than the original data. The methods are automated and can therefore easily be applied to a large number of stars. The application of the filter is not restricted to planetary hosts, but can be applied to any solar-like or red giant stars observed by Kepler/K2.
Stellar structure and evolution can be studied in great detail by asteroseismic methods, provided data of high precision are available. We determine the effective temperature (Teff), surface gravity (log g), metallicity, and the projected rotational velocity (v sin i) of 44 Kepler asteroseismic targets using our high-resolution (R > 20,000) spectroscopic observations; these parameters will then be used to compute asteroseismic models of these stars and to interpret the Kepler light curves.We use the method of cross correlation to measure the radial velocity (RV) of our targets, while atmospheric parameters are derived using the ROTFIT code and spectral synthesis method. We discover three double-lined spectroscopic binaries, HIP 94924, HIP 95115, and HIP 97321 - for the last system, we provide the orbital solution, and we report two suspected single-lined spectroscopic binaries, HIP94112 and HIP 96062. For all stars from our sample we derive RV, v sin i, Teff, log g, and metallicity, and for six stars, we perform a detailed abundance analysis. A spectral classification is done for 33 targets. Finally, we show that the early-type star HIP 94472 is rotating slowly (v sin i = 13 kms/1) and we confirm its classification to the Am spectral type which makes it an interesting and promising target for asteroseismic modeling. The comparison of the results reported in this paper with the information in the Kepler Input Catalog (KIC) shows an urgent need for verification and refinement of the atmospheric parameters listed in the KIC. That refinement is crucial for making a full use of the data delivered by Kepler and can be achieved only by a detailed ground-based study.
We present the ground-based activities within the different working groups of the Kepler Asteroseismic Science Consortium (KASC). The activities aim at the systematic characterization of the 5000+ KASC targets, and at the collection of ground-based follow-up time-series data of selected promising Kepler pulsators. So far, 36 different instruments at 31 telescopes on 23 different observatories in 12 countries are in use, and a total of more than 530 observing nights has been awarded. (Based on observations made with the Isaac Newton Telescope, William Herschel Telescope, Nordic Optical Telescope, Telescopio Nazionale Galileo, Mercator Telescope (La Palma, Spain), and IAC-80 (Tenerife, Spain). Also based on observations taken at the observatories of Sierra Nevada, San Pedro Martir, Vienna, Xinglong, Apache Point, Lulin, Tautenburg, Loiano, Serra la Nave, Asiago, McDonald, Skinakas, Pic du Midi, Mauna Kea, Steward Observatory, Mt Wilson, Bialkow Observatory of the Wroclaw University, Piszkesteto Mountain Station, Observatoire de Haute Provence, and Centro Astronomico Hispano Aleman at Calar Alto. Based on data from the AAVSO International Database.)
The ratios $r_{01}$ and $r_{10}$ of small to large separations of KIC 2837475 primarily exhibit an increase behavior in the observed frequency range. The calculations indicate that only the models with overshooting parameter $delta_{rm ov}$ between approximately 1.2 and 1.6 can reproduce the observed ratios $r_{01}$ and $r_{10}$ of KIC 2837475. The ratios $r_{01}$ and $r_{10}$ of the frequency separations of p-modes with inner turning points that are located in the overshooting region of convective core can exhibit an increase behavior. The frequencies of the modes that can reach the overshooting region decrease with the increase in $delta_{rm ov}$. Thus the ratio distributions are more sensitive to $delta_{rm ov}$ than to other parameters. The increase behavior of the KIC 2837475 ratios results from a direct effect of the overshooting of convective core. The characteristic of the ratios provides a strict constraint on stellar models. Observational constraints point to a star with $M=1.490pm0.018$ $M_{odot}$, $R=1.67pm0.01$ $R_{odot}$, age $=2.8pm0.4$ Gyr, and $1.2lesssim$ $delta_{rm ov}$ $lesssim1.6$ for KIC 2837475.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا