Do you want to publish a course? Click here

Mott physics in $2p$ electron dioxygenyl magnet : O$_{2}$$M$F$_{6}$ ($M$=Sb, Pt)

105   0   0.0 ( 0 )
 Added by Minjae Kim
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have investigated electronic structures and magnetic properties of O$_{2}$$M$F$_{6}$ ($M$=Sb, Pt), which are composed of two building blocks of strongly correlated electrons: O$_{2}^{+}$ dioxygenyls and $M$F$_{6}^{-}$ octahedra, by employing the first-principles electronic structure band method. For O$_{2}$SbF$_{6}$, as a reference system of O$_{2}$PtF$_{6}$, we have shown that the Coulomb correlation of O(2$p$) electrons drives the Mott insulating state. For O$_{2}$PtF$_{6}$, we have demonstrated that the Mott insulating state is induced by the combined effects of the Coulomb correlation of O(2$p$) and Pt(5$d$) electrons and the spin-orbit (SO) interaction of Pt(5$d$) states. The role of the SO interaction in forming the Mott insulating state of O$_{2}$PtF$_{6}$ is similar to the case of Sr$_{2}$IrO$_{4}$ that is a prototype of a SO induced Mott system with J$_{eff}=1/2$.



rate research

Read More

We describe the local structural properties of the iron oxychalcogenides, La$_2$O$_2$Fe$_2$O$M_2$ ($M$ = S, Se), by using pair distribution function (PDF) analysis applied to total scattering data. Our results of neutron powder diffraction show that $M$ = S and Se possess similar nuclear structure at low and room temperatures. The local crystal structures were studied by investigating deviations in atomic positions and the extent of the formation of orthorhombicity. Analysis of the total scattering data suggests that buckling of the Fe$_2$O plane occurs below 100 K. The buckling may occur concomitantly with a change in octahedral height. Furthermore, within a typical range of 1-2 nm, we observed short-range orthorhombic-like structure suggestive of nematic fluctuations in both of these materials.
We present the results of structural and magnetic phase comparisons of the iron oxychalcogenides La$_{2}$O$_{2}$Fe$_{2}$O$M$$_{2}$ ($M$ = S, Se). Elastic neutron scattering reveals that $M$ = S and Se have similar nuclear structures at room and low temperatures. We find that both materials obtain antiferromagnetic ordering at a Neel temperature $T_{N}$ 90.1 $pm$ 0.16 K and 107.2 $pm$ 0.06 K for $M$= Se and S, respectively. The magnetic arrangements of $M$ = S, Se are obtained through Rietveld refinement. We find the order parameter exponent $beta$ to be 0.129 $pm$ 0.006 for $M$ = Se and 0.133 $pm$ 0.007 for $M$ = S. Each of these values is near the Ising symmetry value of 1/8. This suggests that although lattice and electronic structural modifications result from chalcogen exchange, the nature of the magnetic interactions is similar in these materials.
The Per2M(mnt)2 class of organic conductors exhibit a charge density wave (CDW) ground state below about 12 K, which may be suppressed in magnetic fields of order 20 to 30 T. However, for both cases of counter ion M(mnt)2 species studied (M = Au (zero spin) and M = Pt (spin 1/2)), new high field ground states evolve for further increases in magnetic field. We report recent investigations where thermopower, Hall effect, high pressure and additional transport measurements have been carried out to explore these new high field phases.
Dielectric and magnetic properties have been studied for poly-crystalline samples of quasi-one-dimensional frustrated spin-1/2 system Rb$_{2}$(Cu$_{1-x}$M$_{x}$)$_{2}$Mo$_{3}$O$_{12}$(M=Ni and Zn) which does not exhibit a three-dimensional magnetic transition due to quantum spin fluctuation and low dimensionality. A broad peak in the magnetic susceptibility - temperature curves originated from a short range helical ordering at low temperature is suppressed by the Ni and Zn substitution for Cu sites. The capacitance is found to anomalously increase with decreasing T below ~50 K, which is also suppressed by the impurity doping. The behavior of the anomalous capacitance component is found to be strongly connected with that of the magnetic susceptibility for Rb$_{2}$(Cu$_{1-x}$M$_{x}$)$_{2}$Mo$_{3}$O$_{12}$ which indicates that the low-temperature dielectric response is driven by the magnetism.
The magnetic structures and spin dynamics of Na$_{2}$Co$_{2}$TeO$_{6}$ and Na$_{2}$Ni$_{2}$TeO$_{6}$ are investigated by means of elastic and inelastic neutron scattering measurements and the results are discussed in the context of a generalized Kitaev-Heisenberg model on honeycomb lattice with strong spin-orbit coupling. The large number of parameters involved in the Hamiltonian model are evaluated by using an iterative optimization algorithm capable of extracting model solutions and simultaneously estimating their uncertainty. The analyses establish that both Co$^{2+}$ ($d^7$) and Ni$^{2+}$ ($d^8$) antiferromagnets realize bond-dependent anisotropic nearest-neighbor interactions, and support the theoretical predictions for the realization of Kitaev physics in 3$d$ electron systems with effective spins $S$=1/2 and $S$=1. Furthermore, by studying the Na-doped system Na$_{2.4}$Ni$_{2}$TeO$_{6}$, we show that the control of Na content can provide an effective route for fine tuning the magnetic lattice dimensionality, as well as to controlling the bond-dependent anisotropic interactions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا