Do you want to publish a course? Click here

Laboratory comparison of coronagraphic concepts under dynamical seeing and high-order adaptive optics correction

99   0   0.0 ( 0 )
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

The exoplanetary science through direct imaging and spectroscopy will largely expand with the forthcoming development of new instruments at the VLT (SPHERE), Gemini (GPI), Subaru (HiCIAO), and Palomar (Project 1640) observatories. All these ground-based adaptive optics instruments combine extremely high performance adaptive optics (XAO) systems correcting for the atmospheric turbulence with advanced starlight-cancellation techniques such as coronagraphy to deliver contrast ratios of about 10-6 to 10-7. While the past fifteen years have seen intensive research and the development of high-contrast coronagraph concepts, very few concepts have been tested under dynamical seeing conditions (either during sky observation or in a realistic laboratory environment). In this paper, we discuss the results obtained with four different coronagraphs -- phase and amplitude types -- on the High-Order Testbench (HOT), the adaptive optics facility developed at ESO. This facility emphasizes realistic conditions encountered at a telescope (e.g., VLT), including a turbulence generator and a high-order adaptive optics system. It enables to evaluate the performance of high-contrast coronagraphs in the near-IR operating with an AO-corrected PSF of 90% Strehl ratio under 0.5 arcsec dynamical seeing.



rate research

Read More

The major noise source limiting high-contrast imaging is due to the presence of quasi-static speckles. Speckle noise originates from wavefront errors caused by various independent sources, and it evolves on different timescales pending to their nature. An understanding of quasi-static speckles originating from instrumental errors is paramount for the search of faint stellar companions. Instrumental speckles average to a fixed pattern, which can be calibrated to a certain extent, but their temporal evolution ultimately limit this possibility. This study focuses on the laboratory evidence and characterization of the quasi-static pinned speckle phenomenon. Specifically, we examine the coherent amplification of the static speckle contribution to the noise variance in the scientific image, through its interaction with quasi-static speckles. The analysis of a time series of adaptively corrected, coronagraphic images recorded in the laboratory enables the characterization of the temporal stability of the residual speckle pattern in both direct and differential coronagraphic images. We estimate that spoiled and fast-evolving quasi-static speckles present in the system at the angstrom/nanometer level are affecting the stability of the static speckle noise in the final image after the coronagraph. The temporal evolution of the quasi-static wavefront error exhibits linear power law, which can be used in first order to model quasi-static speckle evolution in high-contrast imaging instruments.
We describe the current performance of the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument on the Subaru telescope on Maunakea, Hawaii and present early science results for SCExAO coupled with the CHARIS integral field spectrograph. SCExAO now delivers H band Strehl ratios up to $sim$ 0.9 or better, extreme AO corrections for optically faint stars, and planet-to-star contrasts rivaling that of GPI and SPHERE. CHARIS yield high signal-to-noise detections and 1.1--2.4 $mu m$ spectra of benchmark directly-imaged companions like HR 8799 cde and kappa And b that clarify their atmospheric properties. We also show how recently published as well as unpublished observations of LkCa 15 lead to a re-evaluation of its claimed protoplanets. Finally, we briefly describe plans for a SCExAO-focused direct imaging campaign to directly image and characterize young exoplanets, planet-forming disks, and (later) mature planets in reflected light.
The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument is a multipurpose high-contrast imaging platform designed for the discovery and detailed characterization of exoplanetary systems and serves as a testbed for high-contrast imaging technologies for ELTs. It is a multi-band instrument which makes use of light from 600 to 2500nm allowing for coronagraphic direct exoplanet imaging of the inner 3 lambda/D from the stellar host. Wavefront sensing and control are key to the operation of SCExAO. A partial correction of low-order modes is provided by Subarus facility adaptive optics system with the final correction, including high-order modes, implemented downstream by a combination of a visible pyramid wavefront sensor and a 2000-element deformable mirror. The well corrected NIR (y-K bands) wavefronts can then be injected into any of the available coronagraphs, including but not limited to the phase induced amplitude apodization and the vector vortex coronagraphs, both of which offer an inner working angle as low as 1 lambda/D. Non-common path, low-order aberrations are sensed with a coronagraphic low-order wavefront sensor in the infrared (IR). Low noise, high frame rate, NIR detectors allow for active speckle nulling and coherent differential imaging, while the HAWAII 2RG detector in the HiCIAO imager and/or the CHARIS integral field spectrograph (from mid 2016) can take deeper exposures and/or perform angular, spectral and polarimetric differential imaging. Science in the visible is provided by two interferometric modules: VAMPIRES and FIRST, which enable sub-diffraction limited imaging in the visible region with polarimetric and spectroscopic capabilities respectively. We describe the instrument in detail and present preliminary results both on-sky and in the laboratory.
We present new on-sky results for the Subaru Coronagraphic Extreme Adaptive Optics imager (SCExAO) verifying and quantifying the contrast gain enabled by key components: the closed-loop coronagraphic low-order wavefront sensor (CLOWFS) and focal plane wavefront control (speckle nulling). SCExAO will soon be coupled with a high-order, Pyramid wavefront sensor which will yield > 90% Strehl ratio and enable 10^6--10^7 contrast at small angular separations allowing us to image gas giant planets at solar system scales. Upcoming instruments like VAMPIRES, FIRST, and CHARIS will expand SCExAOs science capabilities.
We describe the current on-sky performance of the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument on the Subaru telescope on Maunakea, Hawaii. SCExAO is continuing to advance its AO performance, delivering H band Strehl ratios in excess of 0.9 for bright stars. We describe new advances with SCExAOs wavefront control that lead to a more stable corrected wavefront and diffraction-limited imaging in the optical, modifications to code that better handle read noise suppression within CHARIS, and tests of the spectrophotometric precision and accuracy within CHARIS. We outline steps in the CHARIS Data Processing Pipeline that output publication-grade data products. Finally, we note recent and upcoming science results, including the discovery of new directly-imaged systems and multiwavelength, deeper characterization of planet-forming disks, and upcoming technical advances that will improve SCExAOs sciencec capabilities.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا