Do you want to publish a course? Click here

Design of nanophotonic circuits for autonomous subsystem quantum error correction

133   0   0.0 ( 0 )
 Added by Joseph Kerckhoff
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We reapply our approach to designing nanophotonic quantum memories to formulate an optical network that autonomously protects a single logical qubit against arbitrary single-qubit errors. Emulating the 9 qubit Bacon-Shor subsystem code, the network replaces the traditionally discrete syndrome measurement and correction steps by continuous, time-independent optical interactions and coherent feedback of unitarily processed optical fields.



rate research

Read More

Quantum error correction (QEC) is fundamental for quantum information processing but entails a substantial overhead of classically-controlled quantum operations, which can be architecturally cumbersome to accommodate. Here we discuss a novel approach to designing elementary QEC memory cells, in which all control operations are performed autonomously by an embedded optical feedback loop. Our approach is natural for nanophotonic implementations in which each qubit can be coupled to its own optical resonator, and our design for a memory cell based on the quantum bit-flip or phase-flip code requires only five qubit-cavities (three for the register and two for the controller) connected by wave-guides. The photonic QEC circuit is entirely on-chip, requiring no external clocking or control, and during steady-state operation would only need to be powered by the injection of constant-amplitude coherent fields.
We can encode a qubit in the energy levels of a quantum system. Relaxation and other dissipation processes lead to decay of the fidelity of this stored information. Is it possible to preserve the quantum information for a longer time by introducing additional drives and dissipation? The existence of autonomous quantum error correcting codes answers this question in the positive. Nonetheless, discovering these codes for a real physical system, i.e., finding the encoding and the associated driving fields and bath couplings, remains a challenge that has required intuition and inspiration to overcome. In this work, we develop and demonstrate a computational approach based on adjoint optimization for discovering autonomous quantum error correcting codes given a description of a physical system. We implement an optimizer that searches for a logical subspace and control parameters to better preserve quantum information. We demonstrate our method on a system of a harmonic oscillator coupled to a lossy qubit, and find that varying the Hamiltonian distance in Fock space -- a proxy for the control hardware complexity -- leads to discovery of different and new error correcting schemes. We discover what we call the $sqrt{3}$ code, realizable with a Hamiltonian distance $d=2$, and propose a hardware-efficient implementation based on superconducting circuits.
Quantum computers promise to solve certain problems exponentially faster than possible classically but are challenging to build because of their increased susceptibility to errors. Remarkably, however, it is possible to detect and correct errors without destroying coherence by using quantum error correcting codes [1]. The simplest of these are the three-qubit codes, which map a one-qubit state to an entangled three-qubit state and can correct any single phase-flip or bit-flip error of one of the three qubits, depending on the code used [2]. Here we demonstrate both codes in a superconducting circuit by encoding a quantum state as previously shown [3,4], inducing errors on all three qubits with some probability, and decoding the error syndrome by reversing the encoding process. This syndrome is then used as the input to a three-qubit gate which corrects the primary qubit if it was flipped. As the code can recover from a single error on any qubit, the fidelity of this process should decrease only quadratically with error probability. We implement the correcting three-qubit gate, known as a conditional-conditional NOT (CCNot) or Toffoli gate, using an interaction with the third excited state of a single qubit, in 63 ns. We find 85pm1% fidelity to the expected classical action of this gate and 78pm1% fidelity to the ideal quantum process matrix. Using it, we perform a single pass of both quantum bit- and phase-flip error correction with 76pm0.5% process fidelity and demonstrate the predicted first-order insensitivity to errors. Concatenating these two codes and performing them on a nine-qubit device would correct arbitrary single-qubit errors. When combined with recent advances in superconducting qubit coherence times [5,6], this may lead to scalable quantum technology.
Quantum-enhanced measurements hold the promise to improve high-precision sensing ranging from the definition of time standards to the determination of fundamental constants of nature. However, quantum sensors lose their sensitivity in the presence of noise. To protect them, the use of quantum error correcting codes has been proposed. Trapped ions are an excellent technological platform for both quantum sensing and quantum error correction. Here we present a quantum error correction scheme that harnesses dissipation to stabilize a trapped-ion qubit. In our approach, always-on couplings to an engineered environment protect the qubit against spin- or phase flips. Our dissipative error correction scheme operates in a fully autonomous manner without the need to perform measurements or feedback operations. We show that the resulting enhanced coherence time translates into a significantly enhanced precision for quantum measurements. Our work constitutes a stepping stone towards the paradigm of self-correcting quantum information processing.
A general method to mitigate the effect of errors in quantum circuits is outlined. The method is developed in sight of characteristics that an ideal method should possess and to ameliorate an existing method which only mitigates state preparation and measurement errors. The method is tested on different IBM Q quantum devices, using randomly generated circuits with up to four qubits. A large majority of results show significant error mitigation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا