Do you want to publish a course? Click here

GRB 081029: Understanding Multiple Afterglow Components

131   0   0.0 ( 0 )
 Added by Stephen Holland
 Publication date 2011
  fields Physics
and research's language is English
 Authors S. T. Holland




Ask ChatGPT about the research

We present an analysis of the unusual optical light curve of the gamma-ray burst GRB~081029, which occurred at a redshift of z = 3.8479$. We combine X-ray and optical observations from the Swift X-Ray Telescope and the Swift UltraViolet/Optical Telescope with optical and infrared data obtained using the REM and ROTSE telescopes to construct a detailed data set extending from 86 s to approximately 100,000 s after the BAT trigger. Our data also cover a wide energy range, from 10 keV to 0.77 eV (1.24 Angstrom to 16,000 Angstrom). The X-ray afterglow shows a shallow initial decay followed by a rapid decay starting at about 18,000s. The optical and infrared afterglow, however, shows an uncharacteristic rise at about 5000 s that does not correspond to any feature in the X-ray light curve. Our data are not consistent with synchrotron radiation from a single-component jet interacting with an external medium. We do, however, find that the observed light curve can be explained using multi-component model for the jet.



rate research

Read More

We present an analysis of the unusual optical light curve of the gamma-ray burst GRB 081029, a long-soft burst with a redshift of z = 3.8479. We combine X-ray and optical observations from the Swift X-Ray Telescope and the Swift UltraViolet/Optical Telescope with ground-based optical and infrared data obtained using the REM, ROTSE, and CTIO 1.3-m telescopes to construct a detailed data set extending from 86 s to approximately 100,000 s after the BAT trigger. Our data cover a wide energy range, from 10 keV to 0.77 eV (1.24 to 16,000 Angstrom). The X-ray afterglow shows a shallow initial decay followed by a rapid decay starting at about 18,000 s. The optical and infrared afterglow, however, shows an uncharacteristic rise at about 3000 s that does not correspond to any feature in the X-ray light curve. Our data are not consistent with synchrotron radiation from a jet interacting with an external medium, a two-component jet, or continuous energy injection from the central engine. We find that the optical light curves can be broadly explained by a collision between two ejecta shells within a two-component jet. A growing number of gamma-ray burst afterglows are consistent with complex jets, which suggests that some (or all) gamma-ray burst jets are complex and will require detailed modelling to fully understand them.
Context. After the launch of the Swift satellite, the Gamma-Ray Burst (GRB) optical light-curve smoothness paradigm has been questioned thanks to the faster and better sampled optical follow-up, which has unveiled a very complex behaviour. This complexity is triggering the interest of the whole GRB community. The GROND multi-channel imager is used to study optical and near-infrared (NIR) afterglows of GRBs with unprecedented optical and near-infrared temporal and spectral resolution. The GRB 081029 has a very prominent optical rebrightening event and is an outstanding example of the application of the multi-channel imager to GRB afterglows. Aims. Here we exploit the rich GROND multi-colour follow-up of GRB 081029 combined with XRT observations to study the nature of late-time rebrightenings that appear in the optical-NIR light-curves of some GRB afterglows. Methods. We analyse the optical and NIR observations obtained with the seven-channel Gamma-Ray burst Optical and Near-infrared Detector (GROND) at the 2.2 m MPI/ESO telescope and the X-ray data obtained with the XRT telescope on board the Swift observatory. The multi-wavelength temporal and spectral evolution is discussed in the framework of different physical models. Results. The extremely steep optical and NIR rebrightening observed in GRB 081029 cannot be explained in the framework of the standard forward shock afterglow model. The absence of a contemporaneous X-ray rebrightening and the evidence of a strong spectral evolution in the optical-NIR bands during the rise suggest two separate components that dominate in the early and late-time lightcurves, respectively. The steepness of the optical rise cannot be explained even in the framework of the alternative scenarios proposed in the literature unless a late-time activity of the central engine is assumed.
We have identified spectral features in the late-time X-ray afterglow of the unusually long, slow-decaying GRB 130925A using NuSTAR, Swift-XRT, and Chandra. A spectral component in addition to an absorbed power-law is required at $>4sigma$ significance, and its spectral shape varies between two observation epochs at $2times10^5$ and $10^6$ seconds after the burst. Several models can fit this additional component, each with very different physical implications. A broad, resolved Gaussian absorption feature of several keV width improves the fit, but it is poorly constrained in the second epoch. An additive black body or second power-law component provide better fits. Both are challenging to interpret: the blackbody radius is near the scale of a compact remnant ($10^8$ cm), while the second powerlaw component requires an unobserved high-energy cutoff in order to be consistent with the non-detection by Fermi-LAT.
The extreme brightness of gamma-ray burst (GRB) afterglows and their simple spectral shape make them ideal beacons to study the interstellar medium of their host galaxies through absorption line spectroscopy. Using 69 low-resolution GRB afterglow spectra, we conduct a study of the rest-frame equivalent width (EW) distribution of features with an average rest-frame EW larger than 0.5 A. To compare an individual GRB with the sample, we develop EW diagrams as a graphical tool, and we give a catalogue with diagrams for the 69 spectra. We introduce a line strength parameter (LSP) that allows us to quantify the strength of the absorption features as compared to the sample by a single number. Using the distributions of EWs of single-species features, we derive the distribution of column densities by a curve of growth (CoG) fit. We find correlations between the LSP and the extinction of the GRB, the UV brightness of the host galaxies and the neutral hydrogen column density. However, we see no significant evolution of the LSP with the redshift. There is a weak correlation between the ionisation of the absorbers and the energy of the GRB, indicating that, either the GRB event is responsible for part of the ionisation, or that galaxies with high-ionisation media produce more energetic GRBs. Spectral features in GRB spectra are, on average, 2.5 times stronger than those seen in QSO intervening damped Lyman-alpha (DLA) systems and slightly more ionised. In particular we find larger excess in the EW of CIV1549 relative to QSO DLAs, which could be related to an excess of Wolf-Rayet stars in the environments of GRBs. From the CoG fitting we obtain an average number of components in the absorption features of GRBs of 6.00(-1.25,+1.00). The most extreme ionisation ratios in our sample are found for GRBs with low neutral hydrogen column density, which could be related to ionisation by the GRB emission.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا