We present experimentally derived potential curves and spin-orbit interaction functions for the strongly perturbed $A^{1}Sigma_{u}^{+}$ and $b^{3}Pi_{u}$ states of the cesium dimer. The results are based on data from several sources. Laser-induced fluorescence Fourier transform spectroscopy (LIF FTS) was used some time ago in the Laboratoire Aim{e} Cotton primarily to study the $X ^{1}Sigma_{g}^{+}$ state. More recent work at Tsinghua University provides information from moderate resolution spectroscopy on the lowest levels of the $b^{3}Pi_{0u}^{pm}$ states as well as additional high resolution data. From Innsbruck University, we have precision data obtained with cold Cs$_{2}$ molecules. Recent data from Temple University was obtained using the optical-optical double resonance polarization spectroscopy technique, and finally, a group at the University of Latvia has added additional LIF FTS data. In the Hamiltonian matrix, we have used analytic potentials (the Expanded Morse Oscillator form) with both finite-difference (FD) coupled-channels and discrete variable representation (DVR) calculations of the term values. Fitted diagonal and off-diagonal spin-orbit functions are obtained and compared with {it ab initio} results from Temple and Moscow State universities.