Do you want to publish a course? Click here

Extreme Feedback and the Epoch of Reionization: Clues in the Local Universe

238   0   0.0 ( 0 )
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

The source responsible for reionizing the universe at z > 6 remains uncertain. While an energetically adequate population of star-forming galaxies may be in place, it is unknown whether a large enough fraction of their ionizing radiation can escape into the intergalactic medium. Attempts to measure this escape-fraction in intensely star-forming galaxies at lower redshifts have largely yielded upper limits. In this paper we present new HST COS and archival FUSE far-UV spectroscopy of a sample of eleven Lyman Break Analogs (LBAs), a rare population of local galaxies that strongly resemble the high-z Lyman Break galaxies. We combine these data with SDSS optical spectra and Spitzer photometry. We also analyze archival FUSE observations of fifteen typical UV-bright local starbursts. We find evidence of small covering factors for optically-thick neutral gas in 3 cases. This is based on two independent pieces of evidence: a significant residual intensity in the cores of the strongest interstellar absorption-lines tracing neutral gas and a small ratio of extinction-corrected H-alpha to UV plus far-IR luminosities. These objects represent three of the four LBAs that contain a young, very compact (~100pc), and highly massive (~10^9 Mo) dominant central object (DCO). These three objects also differ from the other galaxies in showing a significant amount of blueshifted Ly-alpha emission, which may be related to the low covering factor of neutral gas. All four LBAs with DCOs in our sample show extremely high velocity outflows of interstellar gas, with line centroids blueshifted by about 700km/s and maximum outflow velocities reaching at least 1500km/s. We show that these properties are consistent with an outflow driven by a powerful starburst that is exceptionally compact. We speculate that such extreme feedback may be required to enable the escape of ionizing radiation from star forming galaxies.



rate research

Read More

The Extreme starbursts in the local universe workshop was held at the Insituto de Astrofisica de Andalucia in Granada, Spain on 21-25 June 2010. Bearing in mind the advent of a new generation of facilities such as JWST, Herschel, ALMA, eVLA and eMerlin, the aim of the workshop was to bring together observers and theorists to review the latest results. The purpose of the workshop was to address the following issues: what are the main modes of triggering extreme starbursts in the local Universe? How efficiently are stars formed in extreme starbursts? What are the star formation histories of local starburst galaxies? How well do the theoretical simulations model the observations? What can we learn about starbursts in the distant Universe through studies of their local counterparts? How important is the role of extreme starbursts in the hierarchical assembly of galaxies? How are extreme starbursts related to the triggering of AGN in the nuclei of galaxies? Overall, 41 talks and 4 posters with their corresponding 10 minutes short talks were presented during the workshop. In addition, the workshop was designed with emphasis on discussions, and therefore, there were 6 discussion sessions of up to one hour during the workshop. Here is presented a summary of the purposes of the workshop as well as a compilation of the abstracts corresponding to each of the presentations. The summary and conclusions of the workshop along with a description of the future prospects by Sylvain Veilleux can be found in the last section of this document. A photo of the assistants is included.
The spatial fluctuations of the extragalactic background light trace the total emission from all stars and galaxies in the Universe. A multi-wavelength study can be used to measure the integrated emission from first galaxies during reionization when the Universe was about 500 million years old. Here we report arcminute-scale spatial fluctuations in one of the deepest sky surveys with the Hubble Space Telescope in five wavebands between 0.6 and 1.6 $mu$m. We model-fit the angular power spectra of intensity fluctuation measurements to find the ultraviolet luminosity density of galaxies at $z$ > 8 to be $log rho_{rm UV} = 27.4^{+0.2}_{-1.2}$ erg s$^{-1}$ Hz$^{-1}$ Mpc$^{-3}$ $(1sigma)$. This level of integrated light emission allows for a significant surface density of fainter primeval galaxies that are below the point source detection level in current surveys.
167 - Stefan Gottloeber 2010
The local universe is the best known part of our universe. Within the CLUES project (http://clues-project.org - Constrained Local UniversE Simulations) we perform numerical simulations of the evolution of the local universe. For these simulations we construct initial conditions based on observational data of the galaxy distribution in the local universe. Here we review the technique of these constrained simulations. In the second part we summarize our predictions of a possible Warm Dark Matter cosmology for the observed local distribution of galaxies and the local spectrum of mini-voids as well as a study of the satellite dynamics in a simulated Local Group.
We combine observational data on a dozen independent cosmic properties at high-$z$ with the information on reionization drawn from the spectra of distant luminous sources and the cosmic microwave background (CMB) to constrain the interconnected evolution of galaxies and the intergalactic medium since the dark ages. The only acceptable solutions are concentrated in two narrow sets. In one of them reionization proceeds in two phases: a first one driven by Population III stars, completed at $zsim 10$, and after a short recombination period a second one driven by normal galaxies, completed at $zsim 6$. In the other set both kinds of sources work in parallel until full reionization at $zsim 6$. The best solution with double reionization gives excellent fits to all the observed cosmic histories, but the CMB optical depth is 3-$sigma$ larger than the recent estimate from the Planck data. Alternatively, the best solution with single reionization gives less good fits to the observed star formation rate density and cold gas mass density histories, but the CMB optical depth is consistent with that estimate. We make several predictions, testable with future observations, that should discriminate between the two reionization scenarios. As a byproduct our models provide a natural explanation to some characteristic features of the cosmic properties at high-$z$, as well as to the origin of globular clusters.
The epoch of reionization (6 < z < 10) marks the period in our universe when the first large galaxies grew to fruition, and began to affect the universe around them. Massive stars, and potentially accreting supermassive black holes, filled the universe with ionizing radiation, burning off the haze of neutral gas that had filled the intergalactic medium (IGM) since recombination (z~1000). The evolution of this process constrains key properties of these earliest luminous sources, thus observationally constraining reionization is a key science goal for the next decade. The measurement of Lyman-alpha emission from photometrically-identified galaxies is a highly constraining probe of reionization, as a neutral IGM will resonantly scatter these photons, reducing detectability. While significant work has been done with 8-10m telescopes, these observations require extremely large telescopes (ELTs); the flux limits available from todays 10m class telescopes are sufficient for only the brightest known galaxies (m < 26). Ultra-deep surveys with the Giant Magellan Telescope (GMT) and Thirty Meter Telescope (TMT) will be capable of detecting Lyman-alpha emission from galaxies 2-3 magnitudes fainter than todays deepest surveys. Wide-field fiber spectroscopy on the GMT combined with narrow-field AO-assisted slit spectroscopy on the TMT will be able to probe the expected size of ionized bubbles throughout the epoch of reionization, following up degree scale deep imaging surveys with the Wide Field Infrared Space Telescope. These data will provide the first resolved Lyman-alpha-based maps of the ionized intergalactic medium throughout the epoch of reionization, constraining models of both the temporal and spatial evolution of this phase change.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا