Do you want to publish a course? Click here

First Kepler results on compact pulsators VI. Targets in the final half of the survey phase

243   0   0.0 ( 0 )
 Added by Roy {\\O}stensen
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present results from the final six months of a survey to search for pulsations in white dwarfs and hot subdwarf stars with the Kepler spacecraft. Spectroscopic observations are used to separate the objects into accurate classes, and we explore the physical parameters of the subdwarf B (sdB) stars and white dwarfs in the sample. From the Kepler photometry and our spectroscopic data, we find that the sample contains 5 new pulsators of the V1093 Her type, one AM CVn type cataclysmic variable, and a number of other binary systems. This completes the survey for compact pulsators with Kepler. No V361 Hya type of short-period pulsating sdB stars were found in this half, leaving us with a total of one single multiperiodic V361 Hya and 13 V1093 Her pulsators for the full survey. Except for the sdB pulsators, no other clearly pulsating hot subdwarfs or white dwarfs were found, although a few low-amplitude candidates still remain. The most interesting targets discovered in this survey will be observed throughout the remainder of the Kepler Mission, providing the most long-term photometric datasets ever made on such compact, evolved stars. Asteroseismic investigations of these datasets will be invaluable in revealing the interior structure of these stars, and will boost our understanding of their evolutionary history.



rate research

Read More

The survey phase of the Kepler Mission includes a number of hot subdwarf B (sdB) stars to search for nonradial pulsations. We present our analysis of two sdB stars that are found to be g-mode pulsators of the V1093 Her class. These two stars also display the distinct irradiation effect typical of sdB stars with a close M-dwarf companion with orbital periods of less than half a day. Because the orbital period is so short, the stars should be in synchronous rotation, and if so, the rotation period should imprint itself on the multiplet structure of the pulsations. However, we do not find clear evidence for such rotational splitting. Though the stars do show some frequency spacings that are consistent with synchronous rotation, they also display multiplets with splittings that are much smaller. Longer-duration time series photometry will be needed to determine if those small splittings are in fact rotational splitting, or caused by slow amplitude or phase modulation. Further data should also improve the signal-to-noise, perhaps revealing lower amplitude periodicities that could confirm the expectation of synchronous rotation. The pulsation periods seen in these stars show period spacings that are suggestive of high-overtone g-mode pulsations.
117 - M.D. Reed , A. Baran , A.C. Quint 2011
We investigate the possibility of nearly-equally spaced periods in 13 hot subdwarf B (sdB) stars observed with the Kepler spacecraft and one observed with CoRoT. Asymptotic limits for gravity (g-)mode pulsations provide relationships between equal period spacings of modes with differing degrees and relationships between periods of the same radial order but differing degrees. Period transforms, Kolmogorov-Smirnov tests, and linear least-squares fits have been used to detect and determine the significance of equal period spacings. We have also used Monte Carlo simulations to estimate the likelihood that the detected spacings could be produced randomly. Period transforms for nine of the Kepler stars indicate ell=1 period spacings, with five also showing peaks for ell=2 modes. 12 stars indicate ell=1 modes using the Kolmogorov-Smirnov test while another shows solely ell=2 modes. Monte Carlo results indicate that equal period spacings are significant in 10 stars above 99% confidence and 13 of the 14 are above 94% confidence. For 12 stars, the various methods find consistent regular period spacing values to within the errors, two others show some inconsistencies, likely caused by binarity, and the last has significant detections but the mode assignment disagrees between methods. We find a common ell=1 period spacing spanning a range from 231 to 272 s allowing us to correlate pulsation modes with 222 periodicities and that the ell=2 period spacings are related to the ell=1 spacings by the asymptotic relationship $1/sqrt{3}$. We briefly discuss the impact of equal period spacings which indicate low-degree modes with a lack of significant mode trappings.
We present the discovery of nonradial pulsations in five hot subdwarf B (sdB) stars based on 27 days of nearly continuous time-series photometry using the Kepler spacecraft. We find that every sdB star cooler than $approx 27,500,$K that Kepler has observed (seven so far) is a long-period pulsator of the V1093~Her (PG~1716) class or a hybrid star with both short and long periods. The apparently non-binary long-period and hybrid pulsators are described here. The V1093~Her periods range from one to 4.5~h and are associated with $g-$mode pulsations. Three stars also exhibit short periods indicative of $p-$modes with periods of 2 to 5~m and in addition, these stars exhibit periodicities between both classes from 15 to 45~m. We detect the coolest and longest-period V1093~Her-type pulsator to date, KIC010670103 ($T_effapprox 20,900,$K, $P_maxapprox 4.5$~h) as well as a suspected hybrid pulsator, KIC002697388 which is extremely cool ($T_{rm eff}approx 23,900,$K) and for the first time hybrid pulsators which have larger $g-$mode amplitudes than $p-$mode ones. All of these pulsators are quite rich with many frequencies and we are able to apply asymptotic relationships to associate periodicities with modes for KIC010670103. Kepler data are particularly well-suited for these studies as they are long-duration, extremely high duty cycle observations with well-behaved noise properties.
We present the discovery of nonradial pulsations in a hot subdwarf B star based on 30.5 days of nearly continuous time-series photometry using the emph{Kepler} spacecraft. KIC 010139564 is found to be a short-period pulsator of the V361 Hya (EC 14026) class with more than 10 independent pulsation modes whose periods range from 130 to 190 seconds. It also shows one periodicity at a period of 3165 seconds. If this periodicity is a high order g-mode, then this star may be the hottest member of the hybrid DW Lyn stars. In addition to the resolved pulsation frequencies, additional periodic variations in the light curve suggest that a significant number of additional pulsation frequencies may be present. The long duration of the run, the extremely high duty cycle, and the well-behaved noise properties allow us to explore the stability of the periodic variations, and to place strong constraints on how many of them are independent stellar oscillation modes. We find that most of the identified periodicities are indeed stable in phase and amplitude, suggesting a rotation period of 2-3 weeks for this star, but further observations are needed to confirm this suspicion.
We present the first APOKASC catalog of spectroscopic and asteroseismic properties of 1916 red giants observed in the Kepler fields. The spectroscopic parameters provided from the Apache Point Observatory Galactic Evolution Experiment project are complemented with asteroseismic surface gravities, masses, radii, and mean densities determined by members of the Kepler Asteroseismology Science Consortium. We assess both random and systematic sources of error and include a discussion of sample selection for giants in the Kepler fields. Total uncertainties in the main catalog properties are of order 80 K in Teff , 0.06 dex in [M/H], 0.014 dex in log g, and 12% and 5% in mass and radius, respectively; these reflect a combination of systematic and random errors. Asteroseismic surface gravities are substantially more precise and accurate than spectroscopic ones, and we find good agreement between their mean values and the calibrated spectroscopic surface gravities. There are, however, systematic underlying trends with Teff and log g. Our effective temperature scale is between 0-200 K cooler than that expected from the Infrared Flux Method, depending on the adopted extinction map, which provides evidence for a lower value on average than that inferred for the Kepler Input Catalog (KIC). We find a reasonable correspondence between the photometric KIC and spectroscopic APOKASC metallicity scales, with increased dispersion in KIC metallicities as the absolute metal abundance decreases, and offsets in Teff and log g consistent with those derived in the literature. We present mean fitting relations between APOKASC and KIC observables and discuss future prospects, strengths, and limitations of the catalog data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا