Do you want to publish a course? Click here

Constraints on high-energy neutrino emission from SN 2008D

294   0   0.0 ( 0 )
 Added by Marek Kowalski
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

SN 2008D, a core collapse supernova at a distance of 27 Mpc, was serendipitously discovered by the Swift satellite through an associated X-ray flash. Core collapse supernovae have been observed in association with long gamma-ray bursts and X-ray flashes and a physical connection is widely assumed. This connection could imply that some core collapse supernovae possess mildly relativistic jets in which high-energy neutrinos are produced through proton-proton collisions. The predicted neutrino spectra would be detectable by Cherenkov neutrino detectors like IceCube. A search for a neutrino signal in temporal and spatial correlation with the observed X-ray flash of SN 2008D was conducted using data taken in 2007-2008 with 22 strings of the IceCube detector. Events were selected based on a boosted decision tree classifier trained with simulated signal and experimental background data. The classifier was optimized to the position and a soft jet neutrino spectrum assumed for SN 2008D. Using three search windows placed around the X-ray peak, emission time scales from 100 - 10000 s were probed. No events passing the cuts were observed in agreement with the signal expectation of 0.13 events. Upper limits on the muon neutrino flux from core collapse supernovae were derived for different emission time scales and the principal model parameters were constrained.



rate research

Read More

477 - E. Aliu , T. Aune , A. Barnacka 2014
Prompt emission from the very fluent and nearby (z=0.34) gamma-ray burst GRB 130427A was detected by several orbiting telescopes and by ground-based, wide-field-of-view optical transient monitors. Apart from the intensity and proximity of this GRB, it is exceptional due to the extremely long-lived high-energy (100 MeV to 100 GeV) gamma-ray emission, which was detected by the Large Area Telescope on the Fermi Gamma-ray Space Telescope for ~70 ks after the initial burst. The persistent, hard-spectrum, high-energy emission suggests that the highest-energy gamma rays may have been produced via synchrotron self-Compton processes though there is also evidence that the high-energy emission may instead be an extension of the synchrotron spectrum. VERITAS, a ground-based imaging atmospheric Cherenkov telescope array, began follow-up observations of GRB 130427A ~71 ks (~20 hr) after the onset of the burst. The GRB was not detected with VERITAS; however, the high elevation of the observations, coupled with the low redshift of the GRB, make VERITAS a very sensitive probe of the emission from GRB 130427A for E > 100 GeV. The non-detection and consequent upper limit derived place constraints on the synchrotron self-Compton model of high-energy gamma-ray emission from this burst.
The ARGO-YBJ (Astrophysical Radiation Ground-based Observatory at YangBaJing) experiment is designed for very high energy $gamma$-astronomy and cosmic ray researches. Due to the full coverage of a large area ($5600 m^2$) with resistive plate chambers at a very high altitude (4300 m a.s.l.), the ARGO-YBJ detector is used to search for transient phenomena, such as Gamma-ray bursts (GRBs). Because the ARGO-YBJ detector has a large field of view ($sim$2 sr) and is operated with a high duty cycle ($>$90%), it is well suited for GRB surveying and can be operated in searches for high energy GRBs following alarms set by satellite-borne observations at lower energies. In this paper, the sensitivity of the ARGO-YBJ detector for GRB detection is estimated. Upper limits to fluence with 99% confidence level for 26 GRBs inside the field of view from June 2006 to January 2009 are set in the two energy ranges 10$-$100 GeV and 10 GeV$-$1 TeV.
174 - Ruo-Yu Liu , Xiang-Yu Wang 2021
Very recently, diffuse gamma rays with $0.1,{rm PeV}<E_gamma <1,rm PeV$ have been discovered from the Galactic disk by the Tibet air shower array and muon detector array (Tibet AS+MD array). While the measured sub-PeV flux may be compatible with the hadronic origin in the conventional Galactic cosmic ray propagation model, we find that it is in possible tension with the non-detection of Galactic neutrino emissions by the IceCube neutrino telescope. We further find that the presence of an extra cosmic ray component of relatively hard spectrum, which is probably related to the Cygnus Cocoon region and other PeV cosmic-ray sources in the Galactic disk, would alleviate the tension. This scenario implies the existence of an extreme accelerator of either protons or electrons beyond PeV in the Cygnus region, and predicts the continuation of the gamma-ray spectrum of Cygnus Cocoon up to 1 PeV with a possible hardening beyond $sim 30-100,$TeV.
We investigate the possibility that radio-bright active galactic nuclei (AGN) are responsible for the TeV--PeV neutrinos detected by IceCube. We use an unbinned maximum-likelihood-ratio method, 10 years of IceCube muon-track data, and 3388 radio-bright AGN selected from the Radio Fundamental Catalog. None of the AGN in the catalog have a large global significance. The two most significant sources have global significance of $simeq$ 1.5$sigma$ and 0.8$sigma$, though 4.1$sigma$ and 3.8$sigma$ local significance. Our stacking analyses show no significant correlation between the whole catalog and IceCube neutrinos. We infer from the null search that this catalog can account for at most 30% (95% CL) of the diffuse astrophysical neutrino flux measured by IceCube. Moreover, our results disagree with recent work that claimed a 4.1$sigma$ detection of neutrinos from the sources in this catalog, and we discuss the reasons of the difference.
In this article, we present a study of high-energy neutrino emission in gravitational collapse. A compact star is treated as a complete degenerate Fermi gas of neutrons, protons and electrons. In gravitational collapse, its density reaches the thresholds for muon and pion productions, leading to high-energy neutrinos production. By using adiabatic approximation that macroscopic collapsing processes are much slower than microscopic processes of particle interactions, we adopt equilibrium equations of microscopic processes to obtain the number of neutrino productions. Assuming 10% of variation in gravitational binding energy converted to the energy of produced neutrinos, we obtain fluxes of 10MeV electron-neutrinos and GeV electron and muon neutrinos. In addition, we compute the ratio (< 1) of total muon neutrino number to the total electron neutrino number at the source and at the Earth considering neutrino oscillations. We approximately obtain the number of GeV antineutrino events (gtrsim 1) in an ordinary detector such as Kamiokande and total energy of neutrino flux (gtrsim 10^{53} erg), as a function of collapsing star mass.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا