Do you want to publish a course? Click here

A New Diagnostic of the Radial Density Structure of Be Disks

113   0   0.0 ( 0 )
 Added by Zachary Draper
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze the intrinsic polarization of two classical Be stars in the process of losing their circumstellar disks via a Be to normal B star transition originally reported by Wisniewski et al. During each of five polarimetric outbursts which interrupt these disk-loss events, we find that the ratio of the polarization across the Balmer jump (BJ+/BJ-) versus the V-band polarization traces a distinct loop structure as a function of time. Since the polarization change across the Balmer jump is a tracer of the innermost disk density whereas the V-band polarization is a tracer of the total scattering mass of the disk, we suggest such correlated loop structures in Balmer jump-V band polarization diagrams (BJV diagrams) provide a unique diagnostic of the radial distribution of mass within Be disks. We use the 3-D Monte Carlo radiation transfer code HDUST to reproduce the observed clockwise loops simply by turning on/off the mass decretion from the disk. We speculate that counter-clockwise loop structures we observe in BJV diagrams might be caused by the mass decretion rate changing between subsequent on/off sequences. Applying this new diagnostic to a larger sample of Be disk systems will provide insight into the time-dependent nature of each systems stellar decretion rate.



rate research

Read More

Context. The structure of the inner parts of Be star disks (20 stellar radii) is well explained by the viscous decretion disk (VDD) model, which is able to reproduce the observable properties of most of the objects studied so far. The outer parts, on the ther hand, are not observationally well-explored, as they are observable only at radio wavelengths. A steepening of the spectral slope somewhere between infrared and radio wavelengths was reported for several Be stars that were previously detected in the radio, but a convincing physical explanation for this trend has not yet been provided. Aims. We test the VDD model predictions for the extended parts of a sample of six Be disks that have been observed in the radio to address the question of whether the observed turndown in the spectral energy distribution (SED) can be explained in the framework of the VDD model, including recent theoretical development for truncated Be disks in binary systems. Methods. We combine new multi-wavelength radio observations from the Karl. G. Jansky Very Large Array (JVLA) and Atacama Pathfinder Experiment (APEX) with previously published radio data and archival SED measurements at ultraviolet, visual, and infrared wavelengths. The density structure of the disks, including their outer parts, is constrained by radiative transfer modeling of the observed spectrum using VDD model predictions. In the VDD model we include the presumed effects of possible tidal influence from faint binary companions. Results. For 5 out of 6 studied stars, the observed SED shows strong signs of SED turndown between far-IR and radio wavelengths. A VDD model that extends to large distances closely reproduces the observed SEDs up to far IR wavelengths, but fails to reproduce the radio SED. ... (abstract continues but did not fit here)
Evolutionary models of fast-rotating stars show that the stellar rotational velocity may approach the critical speed. Critically rotating stars cannot spin up more, therefore they lose their excess angular momentum through an equatorial outflowing disk. The radial extension of such disks is unknown, partly because we lack information about the radial variations of the viscosity. We study the magnetorotational instability, which is considered to be the origin of anomalous viscosity in outflowing disks. We used analytic calculations to study the stability of outflowing disks submerged in the magnetic field. The magnetorotational instability develops close to the star if the plasma parameter is large enough. At large radii the instability disappears in the region where the disk orbital velocity is roughly equal to the sound speed. The magnetorotational instability is a plausible source of anomalous viscosity in outflowing disks. This is also true in the region where the disk radial velocity approaches the sound speed. The disk sonic radius can therefore be roughly considered as an effective outer disk radius, although disk material may escape from the star to the insterstellar medium. The radial profile of the angular momentum-loss rate already flattens there, consequently, the disk mass-loss rate can be calculated with the sonic radius as the effective disk outer radius. We discuss a possible observation determination of the outer disk radius by using Be and Be/X-ray binaries.
Herschel/HIFI spectroscopic observations of CO J=10-9, CO J=16-15 and [CII] towards HD 100546 are presented. The objective is to resolve the velocity profile of the lines to address the emitting region of the transitions and directly probe the distribution of warm gas in the disk. The spectra reveal double-peaked CO line profiles centered on the systemic velocity, consistent with a disk origin. The J=16-15 line profile is broader than that of the J=10-9 line, which in turn is broader than those of lower J transitions (6-5, 3-2, observed with APEX), thus showing a clear temperature gradient of the gas with radius. A power-law flat disk model is used to fit the CO line profiles and the CO rotational ladder simultaneously, yielding a temperature of T_0=1100 pm 350 K (at r_0 = 13 AU) and an index of q=0.85 pm 0.1 for the temperature radial gradient. This indicates that the gas has a steeper radial temperature gradient than the dust (mean q_{dust} ~ 0.5), providing further proof of the thermal decoupling of gas and dust at the disk heights where the CO lines form. The [CII] line profile shows a strong single-peaked profile red-shifted by 0.5 km s-1 compared to the systemic velocity. We conclude that the bulk of the [CII] emission has a non-disk origin (e.g., remnant envelope or diffuse cloud).
The first results from a near-contemporaneous optical and infrared spectroscopic observing program designed to probe the detailed density structure of classical Be circumstellar disks are presented. We report the discovery of asymmetrical infrared emission lines of He I, O I, Fe II, and the Brackett, Paschen, and Pfund series lines of H I which exhibit an opposite V/R orientation (V $>$ R) to that observed for the optical Balmer H$alpha$ line (V $<$ R) in the classical Be star $zeta$ Tau. We interpret these data as evidence that the density wave which characterizes $zeta$ Taus disk has a significantly different average azimuthal morphology in the inner disk region as compared to the outer disk region. A follow-up multi-wavelength observational campaign to trace the temporal evolution of these line profile morphologies, along with detailed theoretical modeling, is suggested to test this hypothesis.
[Abridged] The infrared ro-vibrational emission lines from organic molecules in the inner regions of protoplanetary disks are unique probes of the physical and chemical structure of planet forming regions and the processes that shape them. The non-LTE excitation effects of carbon dioxide (CO2) are studied in a full disk model to evaluate: (i) what the emitting regions of the different CO2 ro-vibrational bands are; (ii) how the CO2 abundance can be best traced using CO2 ro-vibrational lines using future JWST data and; (iii) what the excitation and abundances tell us about the inner disk physics and chemistry. CO2 is a major ice component and its abundance can potentially test models with migrating icy pebbles across the iceline. A full non-LTE CO2 excitation model has been built. The characteristics of the model are tested using non-LTE slab models. Subsequently the CO2 line formation has been modelled using a two-dimensional disk model representative of T-Tauri disks. The CO2 gas that emits in the 15 $mu$m and 4.5 $mu$m regions of the spectrum is not in LTE and arises in the upper layers of disks, pumped by infrared radiation. The v$_2$ 15 $mu$m feature is dominated by optically thick emission for most of the models that fit the observations and increases linearly with source luminosity. Its narrowness compared with that of other molecules stems from a combination of the low rotational excitation temperature (~250 K) and the inherently narrower feature for CO2. The inferred CO2 abundances derived for observed disks are more than two orders of magnitude lower than those in interstellar ices (~10$^5$), similar to earlier LTE disk estimates. Line-to-continuum ratios are low, of order a few %, thus high signal-to-noise (S/N > 300) observations are needed for individual line detections. Prospects of accurate abundance retreival with JWST-MIRI and JWST-NIRSpec are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا