Do you want to publish a course? Click here

Functoriality for General Spin Groups

183   0   0.0 ( 0 )
 Added by Mahdi Asgari
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

We establish the functorial transfer of generic, automorphic representations from the quasi-split general spin groups to general linear groups over arbitrary number fields, completing an earlier project. Our results are definitive and, in particular, we determine the image of this transfer completely and give a number of applications.



rate research

Read More

83 - Mahdi Asgari 2004
We prove Langlands functoriality for the generic spectrum of general spin groups (both odd and even). Contrary to other recent instances of functoriality, our resulting automorphic representations on the general linear group will not be self-dual. Together with cases of classical groups, this completes the list of cases of split reductive groups whose L-groups have classical derived groups. The important transfer from GSp(4) to GL(4) follows from our result as a special case.
190 - Martin H. Weissman 2015
We incorporate covers of quasisplit reductive groups into the Langlands program, defining an L-group associated to such a cover. We work with all covers that arise from extensions of quasisplit reductive groups by $mathbf{K}_2$ -- the class studied by Brylinski and Deligne. We use this L-group to parameterize genuine irreducible representations in many contexts, including covers of split tori, unramified representations, and discrete series for double covers of semisimple groups over $mathbb R$. An appendix surveys torsors and gerbes on the etale site, as they are used in the construction of the L-group.
119 - Martin H. Weissman 2016
In one article, the author has defined an L-group associated to a cover of a quasisplit reductive group over a local or global field. In another article, Wee Teck Gan and Fan Gao define (following an unpublished letter of the author) an L-group associated to a cover of a pinned split reductive group over a local or global field. In this short note, we give an isomorphism between these L-groups. In this way, the results and conjectures discussed by Gan and Gao are compatible with those of the author. Both support the same Langlands-type conjectures for covering groups.
96 - Dihua Jiang , Baiying Liu 2016
In [Ar13], Arthur classifies the automorphic discrete spectrum of symplectic groups up to global Arthur packets, based on the theory of endoscopy. It is an interesting and basic question to ask: which global Arthur packets contain no cuspidal automorphic representations? The investigation on this question can be regarded as a further development of the topics originated from the classical theory of singular automorphic forms. The results obtained yield a better understanding of global Arthur packets and of the structure of local unramified components of the cuspidal spectrum, and hence are closely related to the generalized Ramanujan problem as posted by Sarnak in [Sar05].
108 - Dihua Jiang , Baiying Liu 2021
We prove a conjecture of the first-named author ([J14]) on the upper bound Fourier coefficients of automorphic forms in Arthur packets of split classical groups over any number field.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا