Do you want to publish a course? Click here

Tropical linear-fractional programming and parametric mean payoff games

120   0   0.0 ( 0 )
 Added by Sergei Sergeev
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

Tropical polyhedra have been recently used to represent disjunctive invariants in static analysis. To handle larger instances, tropical analogues of classical linear programming results need to be developed. This motivation leads us to study the tropical analogue of the classical linear-fractional programming problem. We construct an associated parametric mean payoff game problem, and show that the optimality of a given point, or the unboundedness of the problem, can be certified by exhibiting a strategy for one of the players having certain infinitesimal properties (involving the value of the game and its derivative) that we characterize combinatorially. We use this idea to design a Newton-like algorithm to solve tropical linear-fractional programming problems, by reduction to a sequence of auxiliary mean payoff game problems.



rate research

Read More

We discuss the tropical analogues of several basic questions of convex duality. In particular, the polar of a tropical polyhedral cone represents the set of linear inequalities that its elements satisfy. We characterize the extreme rays of the polar in terms of certain minimal set covers which may be thought of as weighted generalizations of minimal transversals in hypergraphs. We also give a tropical analogue of Farkas lemma, which allows one to check whether a linear inequality is implied by a finite family of linear inequalities. Here, the certificate is a strategy of a mean payoff game. We discuss examples, showing that the number of extreme rays of the polar of the tropical cyclic polyhedral cone is polynomially bounded, and that there is no unique minimal system of inequalities defining a given tropical polyhedral cone.
Mean-payoff games on timed automata are played on the infinite weighted graph of configurations of priced timed automata between two players, Player Min and Player Max, by moving a token along the states of the graph to form an infinite run. The goal of Player Min is to minimize the limit average weight of the run, while the goal of the Player Max is the opposite. Brenguier, Cassez, and Raskin recently studied a variation of these games and showed that mean-payoff games are undecidable for timed automata with five or more clocks. We refine this result by proving the undecidability of mean-payoff games with three clocks. On a positive side, we show the decidability of mean-payoff games on one-clock timed automata with binary price-rates. A key contribution of this paper is the application of dynamic programming based proof techniques applied in the context of average reward optimization on an uncountable state and action space.
125 - Hugo Gimbert 2010
We examine perfect information stochastic mean-payoff games - a class of games containing as special sub-classes the usual mean-payoff games and parity games. We show that deterministic memoryless strategies that are optimal for discounted games with state-dependent discount factors close to 1 are optimal for priority mean-payoff games establishing a strong link between these two classes.
In a mean-payoff parity game, one of the two players aims both to achieve a qualitative parity objective and to minimize a quantitative long-term average of payoffs (aka. mean payoff). The game is zero-sum and hence the aim of the other player is to either foil the parity objective or to maximize the mean payoff. Our main technical result is a pseudo-quasi-polynomial algorithm for solving mean-payoff parity games. All algorithms for the problem that have been developed for over a decade have a pseudo-polynomial and an exponential factors in their running times; in the running time of our algorithm the latter is replaced with a quasi-polynomial one. By the results of Chatterjee and Doyen (2012) and of Schewe, Weinert, and Zimmermann (2018), our main technical result implies that there are pseudo-quasi-polynomial algorithms for solving parity energy games and for solving parity games with weights. Our main conceptual contributions are the definitions of strategy decompositions for both players, and a notion of progress measures for mean-payoff parity games that generalizes both parity and energy progress measures. The former provides normal forms for and succinct representations of winning strategies, and the latter enables the application to mean-payoff parity games of the order-theoretic machinery that underpins a recent quasi-polynomial algorithm for solving parity games.
In the window mean-payoff objective, given an infinite path, instead of considering a long run average, we consider the minimum payoff that can be ensured at every position of the path over a finite window that slides over the entire path. Chatterjee et al. studied the problem to decide if in a two-player game, Player 1 has a strategy to ensure a window mean-payoff of at least 0. In this work, we consider a function that given a path returns the supremum value of the window mean-payoff that can be ensured over the path and we show how to compute its expected value in Markov chains and Markov decision processes. We consider two variants of the function: Fixed window mean-payoff in which a fixed window length $l_{max}$ is provided; and Bounded window mean-payoff in which we compute the maximum possible value of the window mean-payoff over all possible window lengths. Further, for both variants, we consider (i) a direct version of the problem where for each path, the payoff that can be ensured from its very beginning and (ii) a non-direct version that is the prefix independent counterpart of the direct version of the problem.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا