No Arabic abstract
We present an evaluation of the performance of an automated classification of the Hipparcos periodic variable stars into 26 types. The sub-sample with the most reliable variability types available in the literature is used to train supervised algorithms to characterize the type dependencies on a number of attributes. The most useful attributes evaluated with the random forest methodology include, in decreasing order of importance, the period, the amplitude, the V-I colour index, the absolute magnitude, the residual around the folded light-curve model, the magnitude distribution skewness and the amplitude of the second harmonic of the Fourier series model relative to that of the fundamental frequency. Random forests and a multi-stage scheme involving Bayesian network and Gaussian mixture methods lead to statistically equivalent results. In standard 10-fold cross-validation experiments, the rate of correct classification is between 90 and 100%, depending on the variability type. The main mis-classification cases, up to a rate of about 10%, arise due to confusion between SPB and ACV blue variables and between eclipsing binaries, ellipsoidal variables and other variability types. Our training set and the predicted types for the other Hipparcos periodic stars are available online.
We present a novel automated methodology to detect and classify periodic variable stars in a large database of photometric time series. The methods are based on multivariate Bayesian statistics and use a multi-stage approach. We applied our method to the ground-based data of the TrES Lyr1 field, which is also observed by the Kepler satellite, covering ~26000 stars. We found many eclipsing binaries as well as classical non-radial pulsators, such as slowly pulsating B stars, Gamma Doradus, Beta Cephei and Delta Scuti stars. Also a few classical radial pulsators were found.
We present an automated classification of stars exhibiting periodic, non-periodic and irregular light variations. The Hipparcos catalogue of unsolved variables is employed to complement the training set of periodic variables of Dubath et al. with irregular and non-periodic representatives, leading to 3881 sources in total which describe 24 variability types. The attributes employed to characterize light-curve features are selected according to their relevance for classification. Classifier models are produced with random forests and a multistage methodology based on Bayesian networks, achieving overall misclassification rates under 12 per cent. Both classifiers are applied to predict variability types for 6051 Hipparcos variables associated with uncertain or missing types in the literature.
We present a machine learning package for the classification of periodic variable stars. Our package is intended to be general: it can classify any single band optical light curve comprising at least a few tens of observations covering durations from weeks to years, with arbitrary time sampling. We use light curves of periodic variable stars taken from OGLE and EROS-2 to train the model. To make our classifier relatively survey-independent, it is trained on 16 features extracted from the light curves (e.g. period, skewness, Fourier amplitude ratio). The model classifies light curves into one of seven superclasses - Delta Scuti, RR Lyrae, Cepheid, Type II Cepheid, eclipsing binary, long-period variable, non-variable - as well as subclasses of these, such as ab, c, d, and e types for RR Lyraes. When trained to give only superclasses, our model achieves 0.98 for both recall and precision as measured on an independent validation dataset (on a scale of 0 to 1). When trained to give subclasses, it achieves 0.81 for both recall and precision. In order to assess classification performance of the subclass model, we applied it to the MACHO, LINEAR, and ASAS periodic variables, which gave recall/precision of 0.92/0.98, 0.89/0.96, and 0.84/0.88, respectively. We also applied the subclass model to Hipparcos periodic variable stars of many other variability types that do not exist in our training set, in order to examine how much those types degrade the classification performance of our target classes. In addition, we investigate how the performance varies with the number of data points and duration of observations. We find that recall and precision do not vary significantly if the number of data points is larger than 80 and the duration is more than a few weeks. The classifier software of the subclass model is available from the GitHub repository (https://goo.gl/xmFO6Q).
We aim to extend and test the classifiers presented in a previous work against an independent dataset. We complement the assessment of the validity of the classifiers by applying them to the set of OGLE light curves treated as variable objects of unknown class. The results are compared to published classification results based on the so-called extractor methods.Two complementary analyses are carried out in parallel. In both cases, the original time series of OGLE observations of the Galactic bulge and Magellanic Clouds are processed in order to identify and characterize the frequency components. In the first approach, the classifiers are applied to the data and the results analyzed in terms of systematic errors and differences between the definition samples in the training set and in the extractor rules. In the second approach, the original classifiers are extended with colour information and, again, applied to OGLE light curves. We have constructed a classification system that can process huge amounts of time series in negligible time and provide reliable samples of the main variability classes. We have evaluated its strengths and weaknesses and provide potential users of the classifier with a detailed description of its characteristics to aid in the interpretation of classification results. Finally, we apply the classifiers to obtain object samples of classes not previously studied in the OGLE database and analyse the results. We pay specific attention to the B-stars in the samples, as their pulsations are strongly dependent on metallicity.
We describe a methodology to classify periodic variable stars identified using photometric time-series measurements constructed from the Wide-field Infrared Survey Explorer (WISE) full-mission single-exposure Source Databases. This will assist in the future construction of a WISE Variable Source Database that assigns variables to specific science classes as constrained by the WISE observing cadence with statistically meaningful classification probabilities. We have analyzed the WISE light curves of 8273 variable stars identified in previous optical variability surveys (MACHO, GCVS, and ASAS) and show that Fourier decomposition techniques can be extended into the mid-IR to assist with their classification. Combined with other periodic light-curve features, this sample is then used to train a machine-learned classifier based on the random forest (RF) method. Consistent with previous classification studies of variable stars in general, the RF machine-learned classifier is superior to other methods in terms of accuracy, robustness against outliers, and relative immunity to features that carry little or redundant class information. For the three most common classes identified by WISE: Algols, RR Lyrae, and W Ursae Majoris type variables, we obtain classification efficiencies of 80.7%, 82.7%, and 84.5% respectively using cross-validation analyses, with 95% confidence intervals of approximately +/-2%. These accuracies are achieved at purity (or reliability) levels of 88.5%, 96.2%, and 87.8% respectively, similar to that achieved in previous automated classification studies of periodic variable stars.