Do you want to publish a course? Click here

Notes on approaches for solving the Euler-Poisson equations

358   0   0.0 ( 0 )
 Added by Sergey Ershkov
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we proceed to develop a new approach which was formulated first in Ershkov (2017) for solving Poisson equations: a new type of the solving procedure for Euler-Poisson equations (rigid body rotation over the fixed point) is suggested in the current research. Meanwhile, the Euler-Poisson system of equations has been successfully explored for the existence of analytical way for presentation of the solution. As the main result, the new ansatz is suggested for solving Euler-Poisson equations: the Euler-Poisson equations are reduced to the system of 3 nonlinear ordinary differential equations of 1-st order in regard to 3 functions; the elegant approximate solution has been obtained via re-inversion of the proper analytical integral as a set of quasi-periodic cycles. So, the system of Euler-Poisson equations is proved to have the analytical solutions (in quadratures) only in classical simplifying cases: 1) Lagrange case, or 2) Kovalevskaya case or 3) Euler case or other well-known but particular cases.



rate research

Read More

213 - Hailiang Liu , Jaemin Shin 2021
In this work, we study the behavior of blow-up solutions to the multidimensional restricted Euler--Poisson equations which are the localized version of the full Euler--Poisson system. We provide necessary conditions for the existence of finite-time blow-up solutions in terms of the initial data, and describe the asymptotic behavior of the solutions near blow up times. We also identify a rich set of the initial data which yields global bounded solutions.
We present in this communication a new solving procedure for Kelvin&Kirchhoff equations, considering the dynamics of falling the rigid rotating torus in an ideal incompressible fluid, assuming additionally the dynamical symmetry of rotation for the rotating body, I_1 = I_2. Fundamental law of angular momentum conservation is used for the aforementioned solving procedure. The system of Euler equations for dynamics of torus rotation is explored in regard to the existence of an analytic way of presentation for the approximated solution (where we consider the case of laminar flow at slow regime of torus rotation). The second finding is associated with the fact that the Stokes boundary layer phenomenon on the boundaries of the torus is also been assumed at formulation of basic Kelvin&Kirchhoff equations (for which analytical expressions for the components of fluid torque vector {T_2, T_3} were obtained earlier). The results of calculations for the components of angular velocity should then be used for full solving the momentum equation of Kelvin&Kirchhoff system. Trajectories of motion can be divided into, preferably, 3 classes: zigzagging, helical spiral motion, and the chaotic regime of oscillations.
183 - Sergey V. Ershkov 2017
The main objective for this research was the analytical exploration of the dynamics of planar satellite rotation during the motion of an elliptical orbit around a planet. First, we revisit the results of J. Wisdom et al. (1984), in which, by the elegant change of variables (considering the true anomaly f as the independent variable), the governing equation of satellite rotation takes the form of an Abel ODE of the second kind, a sort of generalization of the Riccati ODE. We note that due to the special character of solutions of a Riccati-type ODE, there exists the possibility of sudden jumping in the magnitude of the solution at some moment of time. In the physical sense, this jumping of the Riccati-type solutions of the governing ODE could be associated with the effect of sudden acceleration/deceleration in the satellite rotation around the chosen principle axis at a definite moment of parametric time. This means that there exists not only a chaotic satellite rotation regime (as per the results of J. Wisdom et al. (1984)), but a kind of gradient catastrophe (Arnold 1992) could occur during the satellite rotation process. We especially note that if a gradient catastrophe could occur, this does not mean that it must occur: such a possibility depends on the initial conditions. In addition, we obtained asymptotical solutions that manifest a quasi-periodic character even with the strong simplifying assumptions e ~ 0, p = 1, which reduce the governing equation of J. Wisdom et al. (1984) to a kind of Beletskii equation.
246 - Zhenli Xu , Manman Ma , Pei Liu 2014
We propose a modified Poisson-Nernst-Planck (PNP) model to investigate charge transport in electrolytes of inhomogeneous dielectric environment. The model includes the ionic polarization due to the dielectric inhomogeneity and the ion-ion correlation. This is achieved by the self energy of test ions through solving a generalized Debye-Huckel (DH) equation. We develop numerical methods for the system composed of the PNP and DH equations. Particularly, towards the numerical challenge of solving the high-dimensional DH equation, we developed an analytical WKB approximation and a numerical approach based on the selective inversion of sparse matrices. The model and numerical methods are validated by simulating the charge diffusion in electrolytes between two electrodes, for which effects of dielectrics and correlation are investigated by comparing the results with the prediction by the classical PNP theory. We find that, at the length scale of the interface separation comparable to the Bjerrum length, the results of the modified equations are significantly different from the classical PNP predictions mostly due to the dielectric effect. It is also shown that when the ion self energy is in weak or mediate strength, the WKB approximation presents a high accuracy, compared to precise finite-difference results.
198 - Yuji Hirota 2010
This paper is devoted to the study of Morita equivalence for twisted Poisson manifolds. We review some Morita invariants and prove that integrable twisted Poisson manifolds which are gauge equivalent are Morita equivalent. Moreover, we introduce the notion of weak Morita equivalence and show that if two twisted Poisson manifolds are weak Morita equivalent, there exists a one-to-one correspondence between their twisted symplectic leaves.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا