Do you want to publish a course? Click here

Status of the Daya Bay Reactor Neutrino Oscillation Experiment

139   0   0.0 ( 0 )
 Added by Cheng-Ju Lin
 Publication date 2010
  fields
and research's language is English
 Authors Cheng-Ju Lin




Ask ChatGPT about the research

The last unknown neutrino mixing angle $theta_{13}$ is one of the fundamental parameters of nature; it is also a crucial parameter for determining the sensitivity of future long-baseline experiments aimed to study CP violation in the neutrino sector. Daya Bay is a reactor neutrino oscillation experiment designed to achieve a sensitivity on the value of $sin^2(2theta_{13})$ to better than 0.01 at 90% CL. The experiment consists of multiple identical detectors placed underground at different baselines to minimize systematic errors and suppress cosmogenic backgrounds. With the baseline design, the expected anti-neutrino signal at the far site is about 360 events per day and at each of the near sites is about 1500 events per day. An overview and current status of the experiment will be presented.



rate research

Read More

120 - David E. Jaffe 2021
With the end of Daya Bay experimental operations in December 2020, I review the history, discoveries, measurements and impact of the Daya Bay reactor neutrino experiment in China.
The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of $bar{ u}_e$ oscillations over km-baselines. Subsequent data has provided the worlds most precise measurement of $rm{sin}^22theta_{13}$ and the effective mass splitting $Delta m_{ee}^2$. The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the worlds most prolific sources of electron antineutrinos. Multiple antineutrino detectors are deployed in three underground water pools at different distances from the reactor cores to search for deviations in the antineutrino rate and energy spectrum due to neutrino mixing. Instrumented with photomultiplier tubes (PMTs), the water pools serve as shielding against natural radioactivity from the surrounding rock and provide efficient muon tagging. Arrays of resistive plate chambers over the top of each pool provide additional muon detection. The antineutrino detectors were specifically designed for measurements of the antineutrino flux with minimal systematic uncertainty. Relative detector efficiencies between the near and far detectors are known to better than 0.2%. With the unblinding of the final two detectors baselines and target masses, a complete description and comparison of the eight antineutrino detectors can now be presented. This paper describes the Daya Bay detector systems, consisting of eight antineutrino detectors in three instrumented water pools in three underground halls, and their operation through the first year of eight detector data-taking.
This presentation describes a measurement of the neutrino mixing parameter, sin^2(2theta_13), from the Daya Bay Reactor Neutrino Experiment. Disappearance of electron antineutrinos at a distance of ~2 km from a set of six reactors, where the reactor flux is constrained by near detectors, has been clearly observed. The result, based on the ratio of observed to expected rate of antineutrinos, using 139 days of data taken between December 24, 2011 and May 11, 2012, is sin^2(2theta_13) = 0.089 +/- 0.010(stat.) +/- 0.005(syst.). Improvements in sensitivity from inclusion of additional data, spectral analysis, and improved calibration are expected in the future.
The Daya Bay Reactor Neutrino Experiment has measured the last unknown neutrino mixing angle, {theta}13, to be non-zero at the 7.7{sigma} level. This is the most precise measurement to {theta}13 to date. To further enhance the understanding of the response of the antineutrino detectors (ADs), a detailed calibration of an AD with the Manual Calibration System (MCS) was undertaken during the summer 2012 shutdown. The MCS is capable of placing a radioactive source with a positional accuracy of 25 mm in R direction, 20 mm in Z axis and 0.5{deg} in {Phi} direction. A detailed description of the MCS is presented followed by a summary of its performance in the AD calibration run.
219 - J. Wilhelmi , R. Bopp , R. Brown 2014
We describe the design, installation, and operation of a purification system that is able to provide large volumes of high purity ASTM (D1193-91) Type-I water to a high energy physics experiment. The water environment is underground in a lightly sealed system, and this provides significant challenges to maintaining high purity in the storage pools, each of which contains several thousand cubic meters. High purity is dictated by the need for large optical absorption length, which is critical for the operation of the experiment. The system is largely successful, and the water clarity criteria are met. We also include a discussion of lessons learned.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا