The freeness of Shi-Catalan arrangements


Abstract in English

Let $W$ be a finite Weyl group and $A$ be the corresponding Weyl arrangement. A deformation of $A$ is an affine arrangement which is obtained by adding to each hyperplane $HinA$ several parallel translations of $H$ by the positive root (and its integer multiples) perpendicular to $H$. We say that a deformation is $W$-equivariant if the number of parallel hyperplanes of each hyperplane $Hin A$ depends only on the $W$-orbit of $H$. We prove that the conings of the $W$-equivariant deformations are free arrangements under a Shi-Catalan condition and give a formula for the number of chambers. This generalizes Yoshinagas theorem conjectured by Edelman-Reiner.

Download