No Arabic abstract
MESS (Mass-loss of Evolved StarS) is a Guaranteed Time Key Program that uses the PACS and SPIRE instruments on board the Herschel Space Observatory to observe a representative sample of evolved stars, that include asymptotic giant branch (AGB) and post-AGB stars, planetary nebulae and red supergiants, as well as luminous blue variables, Wolf-Rayet stars and supernova remnants. In total, of order 150 objects are observed in imaging and about 50 objects in spectroscopy. This paper describes the target selection and target list, and the observing strategy. Key science projects are described, and illustrated using results obtained during Herschels science demonstration phase. Aperture photometry is given for the 70 AGB and post-AGB stars observed up to October 17, 2010, which constitutes the largest single uniform database of far-IR and sub-mm fluxes for late-type stars.
In this paper we give a progress report on the Herschel imaging and spectroscopic observations of planetary nebulae that are carried out as part of the MESS guaranteed time key program. We present and discuss imaging and temperature maps of NGC 6720, NGC 650, and NGC 6853, as well as PACS and SPIRE spectroscopy of NGC 7027.
We performed a far-IR imaging survey of the circumstellar dust shells of 144 evolved stars as a mission programme of the AKARI infrared astronomical satellite using the Far-Infrared Surveyor (FIS) instrument. With this survey, we deliver far-IR surface brightness distributions of roughly 10 x 40 or 10 x 20 areas of the sky around the target evolved stars in the four FIS bands at 65, 90, 140, and 160 microns. Our objectives are to characterize the far-IR surface brightness distributions of the cold dust component in the circumstellar dust shells, from which we derive the amount of cold dust grains as low as 20 K and empirically establish the history of the early mass loss history. In this first installment of the series, we introduce the project and its aims, describe the observations, data reduction, and surface brightness correction process, and present the entire data set along with the results of integrated photometry measurements (i.e., the central source and circumstellar dust shell altogether). We find that (1) far-IR emission is detected from all but one object at the spatial resolution about 30 - 50 in the corresponding bands, (2) roughly 60 - 70 % of the target sources show some extension, (3) previously unresolved nearby objects in the far-IR are now resolved around 28 target sources, (4) the results of photometry measurements are reasonable with respect to the entries in the AKARI/FIS Bright Source Catalogue, despite the fact that the targets are assumed to be point-sources when catalogue flux densities were computed, and (5) an IR two-color diagram would place the target sources in a roughly linear distribution that may correlate with the age of the circumstellar dust shell and can potentially be used to identify which targets are more extended than others.
In this article we present the detection of the 69 {mu}m band of the crystalline olivine forsterite within the MESS key program of Herschel. We determine the temperature of the forsterite grains by fitting the 69 {mu}m band.
Light curves, explosion energies, and remnant masses are calculated for a grid of supernovae resulting from massive helium stars that have been evolved including mass loss. These presupernova stars should approximate the results of binary evolution for stars in interacting systems that lose their envelopes close to the time of helium core ignition. Initial helium star masses are in the range 2.5 to 40,Msun, which correspond to main sequence masses of about 13 to 90,Msun. Common Type Ib and Ic supernovae result from stars whose final masses are approximately 2.5 to 5.6,Msun. For heavier stars, a large fraction of collapses lead to black holes, though there is an island of explodability for presupernova masses near 10,Msun. The median neutron star mass in binaries is 1.35--1.38,Msun and the median black hole mass is between 9 and 11,Msun. Even though black holes less massive than 5 Msun are rare, they are predicted down to the maximum neutron star mass. There is no empty ``gap, only a less populated mass range. For standard assumptions regarding the explosions and nucleosynthesis, the models predict light curves that are fainter than the brighter common Type Ib and Ic supernovae. Even with a very liberal, but physically plausible increase in $^{56}$Ni production, the highest energy models are fainter, at peak, than 10$^{42.6}$,erg,s$^{-1}$, and very few approach that limit. The median peak luminosity ranges from 10$^{42.0}$ to 10$^{42.3}$,erg,s$^{-1}$. Possible alternatives to the standard neutrino-powered and radioactive-illuminated models are explored. Magnetars are a promising alternative. Several other unusual varieties of Type I supernovae at both high and low mass are explored.
Deep far-infrared photometric surveys studying galaxy evolution and the nature of the cosmic infrared background are a key strength of the Herschel mission. We describe the scientific motivation for the PACS Evolutionary Probe (PEP) guaranteed time key program and its role in the complement of Herschel surveys, and the field selection which includes popular multiwavelength fields such as GOODS, COSMOS, Lockman Hole, ECDFS, EGS. We provide an account of the observing strategies and data reduction methods used. An overview of first science results illustrates the potential of PEP in providing calorimetric star formation rates for high redshift galaxy populations, thus testing and superseeding previous extrapolations from other wavelengths, and enabling a wide range of galaxy evolution studies.