No Arabic abstract
We present experimental evidence of statistical conformal invariance in isocontours of fluid thickness in experiments of two-dimensional turbulence using soap films. A Schlieren technique is used to visualize regions of the flow with constant film thickness, and association of isocontours with Schramm-Lowner evolution (SLE) is used to identify conformal invariance. In experiments where an inverse energy cascade develops, statistical evidence is consistent with such an association. The diffusivity of the associated one-dimensional Brownian process is close to 8/3, a value previously identified in isocontours of vorticity in high-resolution numerical simulations of two-dimensional turbulence (D. Bernard et al., Nature Phys. 2, 124, 2006). In experiments where the inverse energy cascade is not sufficiently developed, no statistical evidence of conformal invariance is found.
We use momentum transfer arguments to predict the friction factor $f$ in two-dimensional turbulent soap-film flows with rough boundaries (an analogue of three-dimensional pipe flow) as a function of Reynolds number Re and roughness $r$, considering separately the inverse energy cascade and the forward enstrophy cascade. At intermediate Re, we predict a Blasius-like friction factor scaling of $fproptotextrm{Re}^{-1/2}$ in flows dominated by the enstrophy cascade, distinct from the energy cascade scaling of $textrm{Re}^{-1/4}$. For large Re, $f sim r$ in the enstrophy-dominated case. We use conformal map techniques to perform direct numerical simulations that are in satisfactory agreement with theory, and exhibit data collapse scaling of roughness-induced criticality, previously shown to arise in the 3D pipe data of Nikuradse.
Phoresis, the drift of particles induced by scalar gradients in a flow, can result in an effective compressibility, bringing together or repelling particles from each other. Here, we ask whether this effect can affect the transport of particles in a turbulent flow. To this end, we study how the dispersion of a cloud of phoretic particles is modified when injected in the flow, together with a blob of scalar, whose effect is to transiently bring particles together, or push them away from the center of the blob. The resulting phoretic effect can be quantified by a single dimensionless number. Phenomenological considerations lead to simple predictions for the mean separation between particles, which are consistent with results of direct numerical simulations. Using the numerical results presented here, as well as those from previous studies, we discuss quantitatively the experimental consequences of this work and the possible impact of such phoretic mechanisms in natural systems.
The nonlinear and nonlocal coupling of vorticity and strain-rate constitutes a major hindrance in understanding the self-amplification of velocity gradients in turbulent fluid flows. Utilizing highly-resolved direct numerical simulations of isotropic turbulence in periodic domains of up to $12288^3$ grid points, and Taylor-scale Reynolds number $R_lambda$ in the range $140-1300$, we investigate this non-locality by decomposing the strain-rate tensor into local and non-local contributions obtained through Biot-Savart integration of vorticity in a sphere of radius $R$. We find that vorticity is predominantly amplified by the non-local strain coming beyond a characteristic scale size, which varies as a simple power-law of vorticity magnitude. The underlying dynamics preferentially align vorticity with the most extensive eigenvector of non-local strain. The remaining local strain aligns vorticity with the intermediate eigenvector and does not contribute significantly to amplification; instead it surprisingly attenuates intense vorticity, leading to breakdown of the observed power-law and ultimately also the scale-invariance of vorticity amplification, with important implications for prevailing intermittency theories.
We present velocity spectra measured in three cryogenic liquid 4He steady flows: grid and wake flows in a pressurized wind tunnel capable of achieving mean velocities up to 5 m/s at temperatures above and below the superfluid transition, down to 1.7 K, and a chunk turbulence flow at 1.55 K, capable of sustaining mean superfluid velocities up to 1.3 m/s. Depending on the flows, the stagnation pressure probes used for anemometry are resolving from one to two decades of the inertial regime of the turbulent cascade. We do not find any evidence that the second order statistics of turbulence below the superfluid transition differ from the ones of classical turbulence, above the transition.
Wall-bounded flows experience a transition to turbulence characterized by the coexistence of laminar and turbulent domains in some range of Reynolds number R, the natural control parameter. This transitional regime takes place between an upper threshold Rt above which turbulence is uniform (featureless) and a lower threshold Rg below which any form of turbulence decays, possibly at the end of overlong chaotic transients. The most emblematic cases of flow along flat plates transiting to/from turbulence according to this scenario are reviewed. The coexistence is generally in the form of bands, alternatively laminar and turbulent, and oriented obliquely with respect to the general flow direction. The final decay of the bands at Rg points to the relevance of directed percolation and criticality in the sense of statistical-physics phase transitions. The nature of the transition at Rt where bands form is still somewhat mysterious and does not easily fit the scheme holding for pattern-forming instabilities at increasing control parameter on a laminar background. In contrast, the bands arise at Rt out of a uniform turbulent background at a decreasing control parameter. Ingredients of a possible theory of laminar-turbulent patterning are discussed.