Do you want to publish a course? Click here

Bonding, antibonding and tunable optical forces in asymmetric membranes

143   0   0.0 ( 0 )
 Added by Alejandro Rodriguez
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate that tunable attractive (bonding) and repulsive (anti-bonding) forces can arise in highly asymmetric structures coupled to external radiation, a consequence of the bonding/anti-bonding level repulsion of guided-wave resonances that was first predicted in symmetric systems. Our focus is a geometry consisting of a photonic-crystal (holey) membrane suspended above an unpatterned layered substrate, supporting planar waveguide modes that can couple via the periodic modulation of the holey membrane. Asymmetric geometries have a clear advantage in ease of fabrication and experimental characterization compared to symmetric double-membrane structures. We show that the asymmetry can also lead to unusual behavior in the force magnitudes of a bonding/antibonding pair as the membrane separation changes, including nonmonotonic dependences on the separation. We propose a computational method that obtains the entire force spectrum via a single time-domain simulation, by Fourier-transforming the response to a short pulse and thereby obtaining the frequency-dependent stress tensor. We point out that by operating with two, instead of a single frequency, these evanescent forces can be exploited to tune the spring constant of the membrane without changing its equilibrium separation.



rate research

Read More

Whether intentionally introduced to exert control over particles and macroscopic objects, such as for trapping or cooling, or whether arising from the quantum and thermal fluctuations of charges in otherwise neutral bodies, leading to unwanted stiction between nearby mechanical parts, electromagnetic interactions play a fundamental role in many naturally occurring processes and technologies. In this review, we survey recent progress in the understanding and experimental observation of optomechanical and quantum-fluctuation forces. Although both of these effects arise from exchange of electromagnetic momentum, their dramatically different origins, involving either real or virtual photons, lead to different physical manifestations and design principles. Specifically, we describe recent predictions and measurements of attractive and repulsive optomechanical forces, based on the bonding and antibonding interactions of evanescent waves, as well as predictions of modified and even repulsive Casimir forces between nanostructured bodies. Finally, we discuss the potential impact and interplay of these forces in emerging experimental regimes of micromechanical devices.
In Raman spectroscopy of graphite and graphene, the $D$ band at $sim 1355$cm$^{-1}$ is used as the indication of the dirtiness of a sample. However, our analysis suggests that the physics behind the $D$ band is closely related to a very clear idea for describing a molecule, namely bonding and antibonding orbitals in graphene. In this paper, we review our recent work on the mechanism for activating the $D$ band at a graphene edge.
Structural chirality can induce counter-intuitive optical forces due to inherent symmetry properties. While optical forces on a single chiral particle in the Rayleigh regime have been well studied, optical forces in coupled chiral particles remain less explored. By using full-wave numerical simulations and analytical methods of source representation and coupled mode theory, we investigated the optical forces induced by a plane wave on two chiral particles coupling with each other via the evanescent near fields. We found that the induced electric and magnetic dipoles of the chiral particles have complicated couplings that give rise to dark and bright modes. The interaction force between the particles can be either attractive or repulsive, and its magnitude can be significantly enhanced by the resonance modes. The attractive force is much stronger if two particles are of opposite handedness compared with the case of same handedness. The electric dipole force and the magnetic dipole force have the same sign for two particles with the same handedness, while they are of different signs for two particles with opposite handedness. The results can lead to a better understanding of chirality-induced optical forces with potential applications in optical manipulations and chiral light-matter interactions.
Evanescent electromagnetic waves possess spin-momentum locking, where the direction of propagation (momentum) is locked to the inherent polarization of the wave (transverse spin). We study the optical forces arising from this universal phenomenon and show that the fundamental origin of recently reported non-trivial optical chiral forces is spin-momentum locking. For evanescent waves, we show that the direction of energy flow, direction of decay, and direction of spin follow a right hand rule for three different cases of total internal reflection, surface plasmon polaritons, and $HE_{11}$ mode of an optical fiber. Furthermore, we explain how the recently reported phenomena of lateral optical force on chiral and achiral particles is caused by the transverse spin of the evanescent field and the spin-momentum locking phenomenon. Finally, we propose an experiment to identify the unique lateral forces arising from the transverse spin in the optical fiber and point to fundamental differences of the spin density from the well-known orbital angular momentum of light. Our work presents a unified view on spin-momentum locking and how it affects optical forces on chiral and achiral particles.
Focused laser beams allow controlling mechanical motion of objects and can serve as a tool for assembling complex micro and nano structures in space. While in a vast majority of cases small particles experience attractive gradient forces and repulsive radiation pressure, introduction of additional degrees of freedom into optomechanical manipulation suggests approaching new capabilities. Here we analyze optical forces acting on a high refractive index silicon sphere in a focused Gaussian beam and reveal new regimes of particles anti-trapping. Multipolar analysis allows separating an optical force into interception and recoil components, which have a completely different physical nature resulting in different mechanical actions. In particular, interplaying interception radial forces and multipolar resonances within a particle can lead to either trapping or anti-trapping scenarios, depending of the overall system parameters. At the same time, the recoil force generates a significant azimuthal component along with an angular-dependent radial force. Those contribution enable enhancing either trapping or anti-trapping regimes and also introduce bending reactions. These effects are linked to the far-field multipole interference resulting and, specifically, to its asymmetric scattering diagrams. The later approach is extremely useful, as it allows assessing the nature of optomechanical motion by observing far-field patterns. Multipolar engineering of optical forces, being quite general approach, is not necessarily linked to simple spherical shapes and paves a way to new possibilities in microfluidic applications, including sorting and micro assembly of nontrivial volumetric geometries.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا