The goal of this paper is to design compact support basis spline functions that best approximate a given filter (e.g., an ideal Lowpass filter). The optimum function is found by minimizing the least square problem ($ell$2 norm of the difference between the desired and the approximated filters) by means of the calculus of variation; more precisely, the introduced splines give optimal filtering properties with respect to their time support interval. Both mathematical analysis and simulation results confirm the superiority of these splines.