Do you want to publish a course? Click here

What did we know from the ridge in BEC at the CMS

119   0   0.0 ( 0 )
 Added by Ilya Gorbunov N
 Publication date 2010
  fields
and research's language is English
 Authors G. A. Kozlov




Ask ChatGPT about the research

We look at the new two-particle Bose-Einstein correlation (BEC) function accompanied by the color-electric flux model which can explain the ridge behavior in enhanced angular correlation between two identical pions at very broad rapidity with high multiplicity. We argue that such an investigation could probe both the size and the temperature of the source of two pions emitted into a narrow range of azimuthal angles. We can confirm the ev- idence for quark-gluon phase due to interaction of outgoing pions (having high transverse momenta) with the medium in thermal bath in proton-proton collisions.



rate research

Read More

121 - Jiri J. Mares 2016
Temperature, the central concept of thermal physics, is one of the most frequently employed physical quantities in common practice. Even though the operative methods of the temperature measurement are described in detail in various practical instructions and textbooks, the rigorous treatment of this concept is almost lacking in the current literature. As a result, the answer to a simple question of what the temperature is is by no means trivial and unambiguous. There is especially an appreciable gap between the temperature as introduced in the frame of statistical theory and the only experimentally observable quantity related to this concept, phenomenological temperature. Just the logical and epistemological analysis of the present concept of phenomenological temperature is the kernel of the contribution.
String theory has transformed our understanding of geometry, topology and spacetime. Thus, for this special issue of Foundations of Physics commemorating Forty Years of String Theory, it seems appropriate to step back and ask what we do not understand. As I will discuss, time remains the least understood concept in physical theory. While we have made significant progress in understanding space, our understanding of time has not progressed much beyond the level of a century ago when Einstein introduced the idea of space-time as a combined entity. Thus, I will raise a series of open questions about time, and will review some of the progress that has been made as a roadmap for the future.
We present updated values for the mass-mixing parameters relevant to neutrino oscillations, with particular attention to emerging hints in favor of theta_13>0. We also discuss the status of absolute neutrino mass observables, and a possible approach to constrain theoretical uncertainties in neutrinoless double beta decay. Desiderata for all these issues are also briefly mentioned.
174 - P. Kroll 2010
It is reported on an analysis of electroproduction of light mesons at small Bjorken-x within the handbag approach. The partonic subprocesses, meson electroproduction off quarks or gluons, are calculated within the modified perturbative approach in which quark transverse momenta are retained. The soft hadronic matrix elements, generalized parton distributions, are constructed by means of double distributions. The constraints from parton distributions and sum rules are taken into account. Various moments of these generalized parton distributions are compared to recent results from lattice gauge theories.
Recent work has presented intriguing results examining the knowledge contained in language models (LM) by having the LM fill in the blanks of prompts such as Obama is a _ by profession. These prompts are usually manually created, and quite possibly sub-optimal; another prompt such as Obama worked as a _ may result in more accurately predicting the correct profession. Because of this, given an inappropriate prompt, we might fail to retrieve facts that the LM does know, and thus any given prompt only provides a lower bound estimate of the knowledge contained in an LM. In this paper, we attempt to more accurately estimate the knowledge contained in LMs by automatically discovering better prompts to use in this querying process. Specifically, we propose mining-based and paraphrasing-based methods to automatically generate high-quality and diverse prompts, as well as ensemble methods to combine answers from different prompts. Extensive experiments on the LAMA benchmark for extracting relational knowledge from LMs demonstrate that our methods can improve accuracy from 31.1% to 39.6%, providing a tighter lower bound on what LMs know. We have released the code and the resulting LM Prompt And Query Archive (LPAQA) at https://github.com/jzbjyb/LPAQA.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا