Mt. Graham: Optical turbulence vertical distribution at standard and high vertical resolution


Abstract in English

A characterization of the optical turbulence vertical distribution and all the main integrated astroclimatic parameters derived from the CN2 and the wind speed profiles above Mt. Graham is presented. The statistic includes measurements related to 43 nights done with a Generalized Scidar (GS) used in standard configuration with a vertical resolution of ~1 km on the whole 20-22 km and with the new technique (HVR-GS) in the first kilometer. The latter achieves a resolution of ~ 20-30 m in this region of the atmosphere. Measurements done in different periods of the year permit us to provide a seasonal variation analysis of the CN2. A discretized distribution of the typical CN2 profiles useful for the Ground Layer Adaptive Optics (GLAO) simulations is provided and a specific analysis for the LBT Laser Guide Star system ARGOS case is done including the calculation of the gray zones for J, H and K bands. Mt. Graham confirms to be an excellent site with median values of the seeing without dome contribution equal to 0.72, the isoplanatic angle equal to 2.5 and the wavefront coherence time equal to 4.8 msec. We provide a cumulative distribution of the percentage of turbulence developed below H* where H* is included in the (0,1 km) range. We find that 50% of the whole turbulence develops in the first 80 m from the ground. The turbulence decreasing rate is very similar to what has been observed above Mauna Kea.

Download