Do you want to publish a course? Click here

Complementarity and uncertainty in a two-way interferometer

192   0   0.0 ( 0 )
 Added by Li-Gang Wang
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

In terms of operator, the two complementary quantities, the predictability and visibility, are reinvestigated in a two-way interferometer. One Hermitian operator and one non-Hermitian operator (composed of two Hermitian operators) are introduced for the predictability and visibility, respectively. The predictability and visibility can not be measured exactly simultaneously, due to the non-commutation between the two operators. The sum of the variances of the predictability and visibility (the total variance), is used to measure the uncertainty, which is linked to the complementarity relation through the equation, $(delta_P)^2+(delta_Vf)^2+P^2+V^2=2$ . This new description for the predictability and visibility connects the complementarity and the uncertainty relations, although neither of them can be derived directly from the other.



rate research

Read More

111 - Bin Bai , Jianbin Liu , Yu Zhou 2017
Two-photon superbunching of pseudothermal light is observed with single-mode continuous-wave laser light in a linear optical system. By adding more two-photon paths via three rotating ground glasses,g(2)(0) = 7.10 is experimentally observed. The second-order temporal coherence function of superbunching pseudothermal light is theoretically and experimentally studied in detail. It is predicted that the degree of coherence of light can be increased dramatically by adding more multi-photon paths. For instance, the degree of the second- and third-order coherence of the superbunching pseudothermal light with five rotating ground glasses can reach 32 and 7776, respectively. The results are helpful to understand the physics of superbunching and to improve the visibility of thermal light ghost imaging.
We study both the wave-like behavior and particle-like behavior in a general Mach-Zehnder interferometer with its asymmetric beam splitter. A error-free measurement in the detector is used to extract the which-path information. The fringe visibility V and the which-path information Ipath are derived: their complementary relation V + Ipath less than or equal to 1 are found, and the condition for the equality is also presented.
A which-way measurement in Youngs double-slit will destroy the interference pattern. Bohr claimed this complementarity between wave- and particle behaviour is enforced by Heisenbergs uncertainty principle: distinguishing two positions a distance s apart transfers a random momentum q sim hbar/s to the particle. This claim has been subject to debate: Scully et al. asserted that in some situations interference can be destroyed with no momentum transfer, while Storey et al. asserted that Bohrs stance is always valid. We address this issue using the experimental technique of weak measurement. We measure a distribution for q that spreads well beyond [-hbar/s, hbar/s], but nevertheless has a variance consistent with zero. This weakvalued momentum-transfer distribution P_{wv}(q) thus reflects both sides of the debate.
We demonstrate supermode-based second harmonic generation in an integrated nonlinear interferometer made of linear and nonlinear directional couplers. We use a fully-fibered pump shaper to demonstrate second harmonic generation pumped by the symmetric or anti- symmetric fundamental spatial modes. The selection of the pumping mode and thus of a specific SHG spectral profile is achieved through the selection of the fundamental wavelength and via a robust phase setting scheme. We use two methods: either post-selecting or actively setting the pumping mode. Such a modal phase matching paves the way for classical and quantum applications of coupled nonlinear photonic circuits, where multimode excitation, encoding and detection are a route for multiplexing and scaling up light-processing.
Here we report on the realization of a Michelson-Sagnac interferometer whose purpose is the precise characterization of the motion of membranes showing significant light transmission. Our interferometer has a readout noise spectral density (imprecision) of 3E-16 m/sqrt(Hz) at frequencies around the fundamental resonance of a SiN_x membrane at about 100 kHz, without using optical cavities. The readout noise demonstrated is more than 16 dB below the peak value of the membranes standard quantum limit (SQL). This reduction is significantly higher than those of previous works with nano-wires [Teufel et al., Nature Nano. 4, 820 (2009); Anetsberger et al., Nature Phys. 5, 909 (2009)]. We discuss the meaning of the SQL for force measurements and its relation to the readout performance and conclude that neither our nor previous experiments achieved a total noise spectral density as low as the SQL.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا