No Arabic abstract
We present a catalog of Fe, Mg, Si, Ca, and Ti abundances for 2961 red giant stars that are likely members of eight dwarf satellite galaxies of the Milky Way (MW): Sculptor, Fornax, Leo I, Sextans, Leo II, Canes Venatici I, Ursa Minor, and Draco. For the purposes of validating our measurements, we also observed 445 red giants in MW globular clusters and 21 field red giants in the MW halo. The measurements are based on Keck/DEIMOS medium-resolution spectroscopy combined with spectral synthesis. We estimate uncertainties in [Fe/H] by quantifying the dispersion of [Fe/H] measurements in a sample of stars in monometallic globular clusters. We estimate uncertainties in Mg, Si, Ca, and Ti abundances by comparing our medium-resolution spectroscopic measurements to high-resolution spectroscopic abundances of the same stars. For this purpose, our DEIMOS sample included 132 red giants with published high-resolution spectroscopy in globular clusters, the MW halo field, and dwarf galaxies. The standard deviations of the differences in [Fe/H] and [alpha/Fe] (the average of [Mg/Fe], [Si/Fe], [Ca/Fe], and [Ti/Fe]) between the two samples is 0.15 and 0.16, respectively. This catalog represents the largest sample of multi-element abundances in dwarf galaxies to date. The next papers in this series draw conclusions on the chemical evolution, gas dynamics, and star formation histories from the catalog presented here. The wide range of dwarf galaxy luminosity reveals the dependence of dwarf galaxy chemical evolution on galaxy stellar mass.
We derive the star formation histories of eight dwarf spheroidal (dSph) Milky Way satellite galaxies from their alpha element abundance patterns. Nearly 3000 stars from our previously published catalog (Paper II) comprise our data set. The average [alpha/Fe] ratios for all dSphs follow roughly the same path with increasing [Fe/H]. We do not observe the predicted knees in the [alpha/Fe] vs. [Fe/H] diagram, corresponding to the metallicity at which Type Ia supernovae begin to explode. Instead, we find that Type Ia supernova ejecta contribute to the abundances of all but the most metal-poor ([Fe/H] < -2.5) stars. We have also developed a chemical evolution model that tracks the star formation rate, Types II and Ia supernova explosions, and supernova feedback. Without metal enhancement in the supernova blowout, massive amounts of gas loss define the history of all dSphs except Fornax, the most luminous in our sample. All six of the best-fit model parameters correlate with dSph luminosity but not with velocity dispersion, half-light radius, or Galactocentric distance.
We present measurements of Fe, Mg, Si, Ca, and Ti abundances for 388 radial velocity member stars in the Sculptor dwarf spheroidal galaxy (dSph), a satellite of the Milky Way. This is the largest sample of individual alpha element (Mg, Si, Ca, Ti) abundance measurements in any single dSph. The measurements are made from Keck/DEIMOS medium-resolution spectra (6400-9000 A, R ~ 6500). Based on comparisons to published high-resolution (R >~ 20000) spectroscopic measurements, our measurements have uncertainties of sigma([Fe/H]) = 0.14 and sigma([alpha/Fe]) = 0.13. The Sculptor [Fe/H] distribution has a mean <[Fe/H]> = -1.58 and is asymmetric with a long, metal-poor tail, indicative of a history of extended star formation. Sculptor has a larger fraction of stars with [Fe/H] < -2 than the Milky Way halo. We have discovered one star with [Fe/H] = -3.80 +/- 0.28, which is the most metal-poor star known anywhere except the Milky Way halo, but high-resolution spectroscopy is needed to measure this stars detailed abundances. As has been previously reported based on high-resolution spectroscopy, [alpha/Fe] in Sculptor falls as [Fe/H] increases. The metal-rich stars ([Fe/H] ~ -1.5) have lower [alpha/Fe] than Galactic halo field stars of comparable metallicity. This indicates that star formation proceeded more gradually in Sculptor than in the Galactic halo. We also observe radial abundance gradients of -0.030 +/- 0.003 dex per arcmin in [Fe/H] and +0.013 +/- 0.003 dex per arcmin in [alpha/Fe] out to 11 arcmin (275 pc). Together, these measurements cast Sculptor and possibly other surviving dSphs as representative of the dwarf galaxies from which the metal-poor tail of the Galactic halo formed.
We present Magellan/IMACS spectroscopy of the recently-discovered Milky Way satellite Eridanus II (Eri II). We identify 28 member stars in Eri II, from which we measure a systemic radial velocity of $v_{rm hel} = 75.6 pm 1.3~mbox{(stat.)} pm 2.0~mbox{(sys.)}~mathrm{km,s^{-1}}$ and a velocity dispersion of $6.9^{+1.2}_{-0.9}~mathrm{km,s^{-1}}$. Assuming that Eri~II is a dispersion-supported system in dynamical equilibrium, we derive a mass within the half-light radius of Eri II is $1.2^{+0.4}_{-0.3} times 10^{7}~mathrm{M_odot}$, indicating a mass-to-light ratio of $420^{+210}_{-140}~mathrm{M_odot}/mathrm{L_odot}$ and confirming that it is a dark matter-dominated dwarf galaxy. From the equivalent width measurements of the CaT lines of 16 red giant member stars, we derive a mean metallicity of ${rm [Fe/H]} = -2.38 pm 0.13$ and a metallicity dispersion of $sigma_{rm [Fe/H]} = 0.47 ^{+0.12}_{-0.09}$. The velocity of Eri II in the Galactic Standard of Rest frame is $v_{rm GSR} = -66.6~mathrm{km,s^{-1}}$, indicating that either Eri II is falling into the Milky Way potential for the first time or it has passed the apocenter of its orbit on a subsequent passage. At a Galactocentric distance of $sim$370 kpc, Eri II is one of the Milky Ways most distant satellites known. Additionally, we show that the bright blue stars previously suggested to be a young stellar population are not associated with Eri II. The lack of gas and recent star formation in Eri II is surprising given its mass and distance from the Milky Way, and may place constraints on models of quenching in dwarf galaxies and on the distribution of hot gas in the Milky Way halo. Furthermore, the large velocity dispersion of Eri II can be combined with the existence of a central star cluster to constrain MACHO dark matter with mass $gtrsim10~mathrm{M_odot}$.
We conduct a comprehensive and statistical study of the luminosity functions (LFs) for satellite galaxies, by counting photometric galaxies from HSC, DECaLS and SDSS around isolated central galaxies (ICGs) and paired galaxies from the SDSS/DR7 spectroscopic sample. Results of different surveys show very good agreement. The satellite LFs can be measured down to $M_Vsim-10$, and for central primary galaxies as small as $8.5<log_{10}M_ast/M_odot<9.2$ and $9.2<log_{10}M_ast/M_odot<9.9$, implying there are on average 3--8 satellites with $M_V<-10$ around LMC-mass ICGs. The bright end cutoff of satellite LFs and the satellite abundance are both sensitive to the magnitude gap between the primary and its companions, indicating galaxy systems with larger magnitude gaps are on average hosted by less massive dark matter haloes. By selecting primaries with stellar mass similar to our MW, we discovered that i) the averaged satellite LFs of ICGs with different magnitude gaps to their companions and of galaxy pairs with different colour or colour combinations all show steeper slopes than the MW satellite LF; ii) there are on average more satellites with $-15<M_V<-10$ than those in our MW; iii) there are on average 1.5 to 2.5 satellites with $M_V<-16$ around ICGs, consistent with our MW; iv) even after accounting for the large scatter predicted by numerical simulations, the MW satellite LF is uncommon at $M_V>-12$. Hence the MW and its satellite system are statistically atypical of our sample of MW-mass systems. In consequence, our MW is not a good representative of other MW-mass galaxies. Strong cosmological implications based on only MW satellites await additional discoveries of fainter satellites in extra-galactic systems. Interestingly, the MW satellite LF is typical among other MW-mass systems within 40~Mpc in the local Universe, perhaps implying the Local Volume is an under-dense region.
We present a technique that applies spectral synthesis to medium resolution spectroscopy (MRS, R ~ 6000) in the red (6300 A < lambda < 9100 A) to measure [Fe/H] and [alpha/Fe] of individual red giant stars over a wide metallicity range. We apply our technique to 264 red giant stars in seven Galactic globular clusters and demonstrate that it reproduces the metallicities and alpha enhancements derived from high resolution spectroscopy (HRS). The MRS technique excludes the three Ca II triplet lines and instead relies on a plethora of weaker lines. Unlike empirical metallicity estimators, such as the equivalent width of the Ca II triplet, the synthetic method presented here is applicable over an arbitrarily wide metallicity range and is independent of assumptions about the alpha enhancement. Estimates of cluster mean [Fe/H] from different HRS studies show typical scatter of ~0.1 dex but can be larger than 0.2 dex for metal-rich clusters. The scatter in HRS abundance estimates among individual stars in a given cluster is also comparable to 0.1 dex. By comparison, the scatter among MRS [Fe/H] estimates of individual stars in a given cluster is ~0.1 dex for most clusters but 0.17 dex for the most metal-rich cluster, M71 (<[Fe/H]> = -0.8). A star-by-star comparison of HRS vs. MRS [alpha/Fe] estimates indicates that the precision in [alpha/Fe]_MRS is 0.05 dex. The errors in [Fe/H]_MRS and [alpha/Fe]_MRS increase beyond 0.25 dex only below signal-to-noise ratios of 20 A^(-1), which is typical for existing MRS of the red giant stars in Leo I, one of the most distant Milky Way satellites (250 kpc).