Do you want to publish a course? Click here

Suspension and Measurement of Graphene and Bi2Se3 Atomic Membranes

120   0   0.0 ( 0 )
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Coupling high quality, suspended atomic membranes to specialized electrodes enables investigation of many novel phenomena, such as spin or Cooper pair transport in these two dimensional systems. However, many electrode materials are not stable in acids that are used to dissolve underlying substrates. Here we present a versatile and powerful multi-level lithographical technique to suspend atomic membranes, which can be applied to the vast majority of substrate, membrane and electrode materials. Using this technique, we fabricated suspended graphene devices with Al electrodes and mobility of 5500 cm^2/Vs. We also demonstrate, for the first time, fabrication and measurement of a free-standing thin Bi2Se3 membrane, which has low contact resistance to electrodes and a mobility of >~500 cm^2/Vs.



rate research

Read More

We present a detailed transmission electron microscopy and electron diffraction study of the thinnest possible membrane, a single layer of carbon atoms suspended in vacuum and attached only at its edges. Membranes consisting of two graphene layers are also reported. We find that the membranes exhibit an apparently random spontaneous curvature that is strongest in single-layer membranes. A direct visualization of the roughness is presented for two-layer membranes where we used the variation of diffracted intensities with the local orientation of the membrane.
The properties of suspended graphene are currently attracting enormous interest, but the small size of available samples and the difficulties in making them severely restrict the number of experimental techniques that can be used to study the optical, mechanical, electronic, thermal and other characteristics of this one-atom-thick material. Here we describe a new and highly-reliable approach for making graphene membranes of a macroscopic size (currently up to 100 microns in diameter) and their characterization by transmission electron microscopy. In particular, we have found that long graphene beams supported by one side only do not scroll or fold, in striking contrast to the current perception of graphene as a supple thin fabric, but demonstrate sufficient stiffness to support extremely large loads, millions of times exceeding their own weight, in agreement with the presented theory. Our work opens many avenues for studying suspended graphene and using it in various micromechanical systems and electron microscopy.
The quantum Hall (QH) effect, a topologically non-trivial quantum phase, expanded and brought into focus the concept of topological order in physics. The topologically protected quantum Hall edge states are of crucial importance to the QH effect but have been measured with limited success. The QH edge states in graphene take on an even richer role as graphene is distinguished by its four-fold degenerate zero energy Landau level (zLL), where the symmetry is broken by electron interactions on top of lattice-scale potentials but has eluded spatial measurements. In this report, we map the quantum Hall broken-symmetry edge states comprising the graphene zLL at integer filling factors of $ u=0,pm 1$ across the quantum Hall edge boundary using atomic force microscopy (AFM). Measurements of the chemical potential resolve the energies of the four-fold degenerate zLL as a function of magnetic field and show the interplay of the moire superlattice potential of the graphene/boron nitride system and spin/valley symmetry-breaking effects in large magnetic fields.
In low-dimensional systems, the combination of reduced dimensionality, strong interactions, and topology has led to a growing number of many-body quantum phenomena. Thermal transport, which is sensitive to all energy-carrying degrees of freedom, provides a discriminating probe of emergent excitations in quantum materials. However, thermal transport measurements in low dimensions are dominated by the phonon contribution of the lattice. An experimental approach to isolate the electronic thermal conductance is needed. Here, we show how the measurement of nonlocal voltage fluctuations in a multiterminal device can reveal the electronic heat transported across a mesoscopic bridge made of low-dimensional materials. By using graphene as a noise thermometer, we demonstrate quantitative electronic thermal conductance measurements of graphene and carbon nanotubes up to 70K, achieving a precision of ~1% of the thermal conductance quantum at 5K. Employing linear and nonlinear thermal transport, we observe signatures of long-range interaction-mediated energy transport in 1D, in agreement with a theoretical model. Our versatile nonlocal noise thermometry allows new experiments probing energy transport in emergent states of matter in low dimensions.
As mechanical structures enter the nanoscale regime, the influence of van der Waals forces increases. Graphene is attractive for nanomechanical systems because its Youngs modulus and strength are both intrinsically high, but the mechanical behavior of graphene is also strongly influenced by the van der Waals force. For example, this force clamps graphene samples to substrates, and also holds together the individual graphene sheets in multilayer samples. Here we use a pressurized blister test to directly measure the adhesion energy of graphene sheets with a silicon oxide substrate. We find an adhesion energy of 0.45 pm 0.02 J/m2 for monolayer graphene and 0.31 pm 0.03 J/m2 for samples containing 2-5 graphene sheets. These values are larger than the adhesion energies measured in typical micromechanical structures and are comparable to solid/liquid adhesion energies. We attribute this to the extreme flexibility of graphene, which allows it to conform to the topography of even the smoothest substrates, thus making its interaction with the substrate more liquid-like than solid-like.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا