A $q$-Identity Related to a Comodule


Abstract in English

In this paper we show that a certain algebra being a comodule algebra over the Taft Hopf algebra of dimension $n^2$ is equivalent to a set of identities related to the $q$-binomial coefficient, when $q$ is a primitive $n^{th}$ root of 1. We then give a direct combinatorial proof of these identities.

Download