Form factors of the nucleon have been extracted from experiment with high precision. However, lattice calculations have failed so far to reproduce the observed dependence of form factors on the momentum transfer. We have embarked on a program to thoroughly investigate systematic effects in lattice calculation of the required three-point correlation functions. Here we focus on the possible contamination from higher excited states and present a method which is designed to suppress them. Its effectiveness is tested for several baryonic matrix elements, different lattice sizes and pion masses.
We report on our calculation of the nucleon axial charge gA in QCD with two flavours of dynamical quarks. A detailed investigation of systematic errors is performed, with a particular focus on contributions from excited states to three-point correlation functions. The use of summed operator insertions allows for a much better control over such contamination. After performing a chiral extrapolation to the physical pion mass, we find gA=1.223 +/- 0.063 (stat) +0.035 -0.060 (syst), in good agreement with the experimental value.
At the precision reached in current lattice QCD calculations, electromagnetic effects are becoming numerically relevant. Here, electromagnetic effects are included by superimposing $mathrm{U}(1)$ degrees of freedom on $N_f = 2+1$ QCD configurations from the Budapest-Marseille-Wuppertal Collaboration. We present preliminary results for the electromagnetic corrections to light pseudoscalars mesons masses and discuss some of the associated systematic errors.
We study the KN interactions in the I(J^{pi})=0(1/2^-) and 1(1/2^-) channels and associated exotic state Theta^+ from 2+1 flavor full lattice QCD simulation for relatively heavy quark mass corresponding to m_{pi}=871 MeV. The s-wave KN potentials are obtained from the Bethe-Salpeter wave function by using the method recently developed by HAL QCD (Hadrons to Atomic nuclei from Lattice QCD) Collaboration. Potentials in both channels reveal short range repulsions: Strength of the repulsion is stronger in the I=1 potential, which is consistent with the prediction of the Tomozawa-Weinberg term. The I=0 potential is found to have attractive well at mid range. From these potentials, the $KN$ scattering phase shifts are calculated and compared with the experimental data.
We calculate $pXi^0$ potentials from the equal-time Bethe-Salpeter amplitude measured in the quenched QCD simulation with the spatial lattice volume, (4.4 fm)$^3$. The standard Wilson gauge action with the gauge coupling $beta=5.7$ on $32^4$ lattice together with the standard Wilson quark action are used. The hopping parameter $kappa_{ud}=0.1678$ is chosen for $u$ and $d$ quarks, which corresponds to $m_{pi}simeq 0.37$ GeV. The physical strange quark mass is used by taking the parameter $kappa_s=0.1643$ which is deduced from the physical $K$ meson mass. The lattice spacing $a=0.1420$ fm is determined by the physical $rho$ meson mass. We find that the $pXi^0$ potential has strong spin dependence. Strong repulsive core is found in $^1S_0$ channel while the effective central potential in the $^3S_1$ channel has relatively weak repulsive core. The potentials also have weak attractive parts in the medium to long distance region (0.6 fm $lsim r lsim 1.2$ fm) in both of the $^1S_0$ and $^3S_1$ channels.
We present a new analysis method that allows one to understand and model excited state contributions in observables that are dominated by a pion pole. We apply this method to extract axial and (induced) pseudoscalar nucleon isovector form factors, which satisfy the constraints due to the partial conservation of the axial current up to expected discretization effects. Effective field theory predicts that the leading contribution to the (induced) pseudoscalar form factor originates from an exchange of a virtual pion, and thus exhibits pion pole dominance. Using our new method, we can recover this behavior directly from lattice data. The numerical analysis is based on a large set of ensembles generated by the CLS effort, including physical pion masses, large volumes (with up to $96^3 times 192$ sites and $L m_pi = 6.4$), and lattice spacings down to $0.039 , text{fm}$, which allows us to take all the relevant limits. We find that some observables are much more sensitive to the choice of parametrization of the form factors than others. On the one hand, the $z$-expansion leads to significantly smaller values for the axial dipole mass than the dipole ansatz ($M_A^{text{$z$-exp}}=1.02(10) , text{GeV}$ versus $M_A^{text{dipole}} = 1.31(8) , text{GeV}$). On the other hand, we find that the result for the induced pseudoscalar coupling at the muon capture point is almost independent of the choice of parametrization ($g_P^{star text{$z$-exp}} = 8.68(45)$ and $g_P^{star text{dipole}} = 8.30(24)$), and is in good agreement with both, chiral perturbation theory predictions and experimental measurement via ordinary muon capture. We also determine the axial coupling constant $g_A$.