Do you want to publish a course? Click here

The Banana Project. III. Spin-orbit Alignment in the Long-period Eclipsing Binary NY Cephei

130   0   0.0 ( 0 )
 Added by Simon Albrecht
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Binaries are not always neatly aligned. Previous observations of the DI Her system showed that the spin axes of both stars are highly inclined with respect to one another and the orbital axis. Here we report on a measurement of the spin-axis orientation of the primary star of the NY Cep system, which is similar to DI Her in many respects: it features two young early-type stars (~6 Myr, B0.5V+B2V), in an eccentric and relatively long-period orbit (e=0.48, P=15.d3). The sky projections of the rotation vector and the spin vector are well-aligned (beta_p = 2 +- 4 degrees), in strong contrast to DI Her. Although no convincing explanation has yet been given for the misalignment of DI Her, our results show that the phenomenon is not universal, and that a successful theory will need to account for the different outcome in the case of NY Cep.



rate research

Read More

V383Sco was discovered to be an eclipsing binary at the beginning of the XX century. This system has one of the longest orbital periods known (13.5yr) and was initially classified as a zet_Aur-type variable. It was then forgotten for decades. This study provides a detailed look at the V383Sco, using new data obtained around the last eclipse in 2007/8. There was a suspicion that this system could be similar to eclipsing systems with extensive dusty disks like EECep and eps_Aur. This and other, alternative hypotheses are considered. The ASAS-3 VI light curves have been used to examine photometric changes. Low-(LRS) and high-res.(HRS) spectra have been used for spectral classification, to analyse line profiles, as well as to determine the reddening, radial velocities (RVs) and distance. The SED was analysed. Using original numerical code, we performed a simplified model of the eclipse, taking into account the pulsations of one of the components. The LRS shows traces of molecular bands, characteristic of an M-type supergiant. The presence of this star in the system is confirmed by SED, by a strong dependence of the eclipse depth on the photometric bands, and by pulsational changes. The presence of a low excitation nebula around the system has been inferred from [OI] 6300A emission. Analysis of the RVs, reddening, and P-L relation for Mira-type stars imply a distance to the V383Sco of 8.4+-0.6 kpc. The distance to the nearby V381Sco is 6.4+-0.8 kpc. The very different and oppositely directed RVs of these systems (89.8 vs -178.8 km/s) seem to be in agreement with a bulge/bar kinematic model of the Galactic centre and inconsistent with purely circular motion. We have found evidence for the presence of a pulsating M-type supergiant in the V383Sco which periodically obscures the much more luminous F0I-type star, causing the deep (possibly total) eclipses which vary in duration and shape.
259 - S.-B. Qian , L. Liu , L.-Y. Zhu 2012
By using six new determined mid-eclipse times together with those collected from the literature, we found that the Observed-Calculated (O-C) curve of RR Cae shows a cyclic change with a period of 11.9 years and an amplitude of 14.3s, while it undergoes an upward parabolic variation (revealing a long-term period increase at a rate of dP/dt =+4.18(+-0.20)x10^(-12). The cyclic change was analyzed for the light-travel time effect that arises from the gravitational influence of a third companion. The mass of the third body was determined to be M_3*sin i = 4.2(+-0.4) M_{Jup} suggesting that it is a circumbinary giant planet when its orbital inclination is larger than 17.6 degree. The orbital separation of the circumbinary planet from the central eclipsing binary is about 5.3(+-0.6)AU. The period increase is opposite to the changes caused by angular momentum loss via magnetic braking or/and gravitational radiation, nor can it be explained by the mass transfer between both components because of its detached configuration. These indicate that the observed upward parabolic change is only a part of a long-period (longer than 26.3 years) cyclic variation, which may reveal the presence of another giant circumbinary planet in a wide orbit.
In this paper, we derive the fundamental properties of 1SWASPJ011351.29+314909.7 (J0113+31), a metal-poor (-0.40 +/- 0.04 dex), eclipsing binary in an eccentric orbit (~0.3) with an orbital period of ~14.277 d. Eclipsing M dwarfs orbiting solar-type stars (EBLMs), like J0113+31, have been identified from WASP light curves and follow-up spectroscopy in the course of the transiting planet search. We present the first binary of the EBLM sample to be fully analysed, and thus, define here the methodology. The primary component with a mass of 0.945 +/- 0.045 Msun has a large radius (1.378 +/- 0.058 Rsun) indicating that the system is quite old, ~9.5 Gyr. The M-dwarf secondary mass of 0.186 +/- 0.010 Msun and radius of 0.209 +/- 0.011 Rsun are fully consistent with stellar evolutionary models. However, from the near-infrared secondary eclipse light curve, the M dwarf is found to have an effective temperature of 3922 +/- 42 K, which is ~600 K hotter than predicted by theoretical models. We discuss different scenarios to explain this temperature discrepancy. The case of J0113+31 for which we can measure mass, radius, temperature and metallicity, highlights the importance of deriving mass, radius and temperature as a function of metallicity for M dwarfs to better understand the lowest mass stars. The EBLM Project will define the relationship between mass, radius, temperature and metallicity for M dwarfs providing important empirical constraints at the bottom of the main sequence.
143 - T. Mitnyan 2018
Context. Despite the fact that VW Cephei is one of the well-studied contact binaries in the literature, there is no fully consistent model available that can explain every observed property of this system. Aims. Our motivation is to obtain new spectra along with photometric measurements, to analyze what kind of changes may have happened in the system in the past two decades, and to propose new ideas for explaining them. Methods. For the period analysis we determined 10 new times of minima from our light curves, and constructed a new O$-$C diagram of the system. Radial velocities of the components were determined using the cross-correlation technique. The light curves and radial velocities were modelled simultaneously with the PHOEBE code. All observed spectra were compared to synthetic spectra and equivalent widths of the H$alpha$ line were measured on their differences. Results. We have re-determined the physical parameters of the system according to our new light curve and spectral models. We confirm that the primary component is more active than the secondary, and there is a correlation between spottedness and the chromospheric activity. We propose that flip-flop phenomenon occurring on the primary component could be a possible explanation of the observed nature of the activity. To explain the period variation of VW Cep, we test two previously suggested scenarios: presence of a fourth body in the system, and the Applegate-mechanism caused by periodic magnetic activity. We conclude that although none of these mechanisms can be ruled out entirely, the available data suggest that mass transfer with a slowly decreasing rate gives the most likely explanation for the period variation of VW Cep.
Eclipsing binary DI Herculis (DI Her) is known to exhibit anomalously slow apsidal precession, below the rate predicted by the general relativity. Recent measurements of the Rossiter-McLauglin effect indicate that stellar spins in DI Her are almost orthogonal to the orbital angular momentum, which explains the anomalous precession in agreement with the earlier theoretical suggestion by Shakura. However, these measurements yield only the projections of the spin-orbit angles onto the sky plane, leaving the spin projection onto our line of sight unconstrained. Here we describe a method of determining the full three-dimensional spin orientation of the binary components relying on the use of the gravity darkening effect, which is significant for the rapidly rotating stars in DI Her. Gravity darkening gives rise to nonuniform brightness distribution over the stellar surface, the pattern of which depends on the stellar spin orientation. Using archival photometric data obtained during multiple eclipses spread over several decades we are able to constrain the unknown spin angles in DI Her with this method, finding that spin axes of both stars lie close to the plane of the sky. Our procedure fully accounts for the precession of stellar spins over the long time span of observations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا