No Arabic abstract
Large mosaic multiCCD camera is the key instrument for modern digital sky survey. DECam is an extremely red sensitive 520 Megapixel camera designed for the incoming Dark Energy Survey (DES). It is consist of sixty two 4k$times$2k and twelve 2k x 2k 250-micron thick fully-depleted CCDs, with a focal plane of 44 cm in diameter and a field of view of 2.2 square degree. It will be attached to the Blanco 4-meter telescope at CTIO. The DES will cover 5000 square-degrees of the southern galactic cap in 5 color bands (g, r, i, z, Y) in 5 years starting from 2011. To achieve the science goal of constraining the Dark Energy evolution, stringent requirements are laid down for the design of DECam. Among them, the flatness of the focal plane needs to be controlled within a 60-micron envelope in order to achieve the specified PSF variation limit. It is very challenging to measure the flatness of the focal plane to such precision when it is placed in a high vacuum dewar at 173 K. We developed two image based techniques to measure the flatness of the focal plane. By imaging a regular grid of dots on the focal plane, the CCD offset along the optical axis is converted to the variation the grid spacings at different positions on the focal plane. After extracting the patterns and comparing the change in spacings, we can measure the flatness to high precision. In method 1, the regular dots are kept in high sub micron precision and cover the whole focal plane. In method 2, no high precision for the grid is required. Instead, we use a precise XY stage moves the pattern across the whole focal plane and comparing the variations of the spacing when it is imaged by different CCDs. Simulation and real measurements show that the two methods work very well for our purpose, and are in good agreement with the direct optical measurements.
Electro-optical testing and characterization of the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) Camera focal plane, consisting of 205 charge-coupled devices (CCDs) arranged into 21 stand-alone Raft Tower Modules (RTMs) and 4 Corner Raft Tower Modules (CRTMs), is currently being performed at the SLAC National Accelerator Laboratory. Testing of the camera sensors is performed using a set of custom-built optical projectors, designed to illuminate the full focal plane or specific regions of the focal plane with a series of light illumination patterns: the crosstalk projector, the flat illuminator projector, and the spot grid projector. In addition to measurements of crosstalk, linearity and full well, the ability to project realistically-sized sources, using the spot grid projector, makes possible unique measurements of instrumental signatures such as deferred charge distortions, astrometric shifts due to sensor effects, and the brighter-fatter effect, prior to camera first light. Here we present the optical projector designs and usage, the electro-optical measurements and how these results have been used in testing and improving the LSST Camera instrumental signature removal algorithms.
High contrast imaging and spectroscopy provide unique constraints for exoplanet formation models as well as for planetary atmosphere models. But this can be challenging because of the planet-to-star small angular separation and high flux ratio. Recently, optimized instruments like SPHERE and GPI were installed on 8m-class telescopes. These will probe young gazeous exoplanets at large separations (~1au) but, because of uncalibrated aberrations that induce speckles in the coronagraphic images, they are not able to detect older and fainter planets. There are always aberrations that are slowly evolving in time. They create quasi-static speckles that cannot be calibrated a posteriori with sufficient accuracy. An active correction of these speckles is thus needed to reach very high contrast levels (>1e7). This requires a focal plane wavefront sensor. Our team proposed the SCC, the performance of which was demonstrated in the laboratory. As for all focal plane wavefront sensors, these are sensitive to chromatism and we propose an upgrade that mitigates the chromatism effects. First, we recall the principle of the SCC and we explain its limitations in polychromatic light. Then, we present and numerically study two upgrades to mitigate chromatism effects: the optical path difference method and the multireference self-coherent camera. Finally, we present laboratory tests of the latter solution. We demonstrate in the laboratory that the MRSCC camera can be used as a focal plane wavefront sensor in polychromatic light using an 80 nm bandwidth at 640 nm. We reach a performance that is close to the chromatic limitations of our bench: contrast of 4.5e-8 between 5 and 17 lambda/D. The performance of the MRSCC is promising for future high-contrast imaging instruments that aim to actively minimize the speckle intensity so as to detect and spectrally characterize faint old or light gaseous planets.
We present a method to calibrate a high-resolution wavefront-correcting device with a single, static camera, located in the focal plane; no moving of any component is needed. The method is based on a localized diversity and differential optical transfer functions (dOTF) to compute both the phase and amplitude in the pupil plane located upstream of the last imaging optics. An experiment with a spatial light modulator shows that the calibration is sufficient to robustly operate a focal-plane wavefront sensing algorithm controlling a wavefront corrector with ~40 000 degrees of freedom. We estimate that the locations of identical wavefront corrector elements are determined with a spatial resolution of 0.3% compared to the pupil diameter.
We have designed, constructed and put into operation a very large area CCD camera that covers the field of view of the 1.2 m Samuel Oschin Schmidt Telescope at the Palomar Observatory. The camera consists of 112 CCDs arranged in a mosaic of four rows with 28 CCDs each. The CCDs are 600 x 2400 pixel Sarnoff thinned, back illuminated devices with 13 um x 13 um pixels. The camera covers an area of 4.6 deg x 3.6 deg on the sky with an active area of 9.6 square degrees. This camera has been installed at the prime focus of the telescope, commissioned, and scientific quality observations on the Palomar-QUEST Variability Sky Survey were started in September of 2003. The design considerations, construction features, and performance parameters of this camera are described in this paper.
The Mexico-UK Submillimetre Camera for Astronomy (MUSCAT) is the second-generation large-format continuum camera operating in the 1.1 mm band to be installed on the 50-m diameter Large Millimeter Telescope (LMT) in Mexico. The focal plane of the instrument is made up of 1458 horn coupled lumped-element kinetic inductance detectors (LEKID) divided equally into six channels deposited on three silicon wafers. Here we present the preliminary results of the complete characterisation in the laboratory of the MUSCAT focal plane. Through the instruments readout system, we perform frequency sweeps of the array to identify the resonance frequencies, and continuous timestream acquisitions to measure and characterise the intrinsic noise and 1/f knee of the detectors. Subsequently, with a re-imaging lens and a black body point source, the beams of every detector are mapped, obtaining a mean FWHM size of $sim$3.27 mm, close to the expected 3.1 mm. Then, by varying the intensity of a beam filling black body source, we measure the responsivity and noise power spectral density (PSD) for each detector under an optical load of 300 K, obtaining the noise equivalent power (NEP), with which we verify that the majority of the detectors are photon noise limited. Finally, using a Fourier Transform Spectrometer (FTS), we measure the spectral response of the instrument, which indicate a bandwidth of 1.0--1.2 mm centred on 1.1 mm, as expected.