No Arabic abstract
We review recent developments in the QCD description of jet production and modification in reactions with heavy nuclei at relativistic energies. Our goal is to formulate a perturbative expansion in the presence of nuclear matter that allows to systematically improve the accuracy of the theoretical predictions. As an example, we present calculations of inclusive jet cross sections at RHIC, Z0/gamma*-tagged jet cross sections at the LHC, and jet shapes that include both next-to-leading order perturbative effects and the effects of the nuclear medium.
We review a recently proposed phenomenological framework to establish the notions of QCD factorization and universality of jet cross sections in the heavy-ion environment. First results of a global analysis of the nuclear modification factor of inclusive jets are presented where we extract medium modified jet functions using a Monte Carlo sampling approach. We observe that gluon jets are significantly more suppressed than quark jets. In addition, we study the jet radius dependence of the inclusive jet cross section in heavy-ion collisions and comment on a recent measurement from CMS. By considering for example jet substructure observables it will be possible to test the universality of the extracted medium jet functions. We thus expect that the presented results will eventually allow for extractions of medium properties with a reduced model bias.
We review recent theoretical developments in the study of the structure of jets that are produced in ultra relativistic heavy ion collisions. The core of the review focusses on the dynamics of the parton cascade that is induced by the interactions of a fast parton crossing a quark-gluon plasma. We recall the basic mechanisms responsible for medium induced radiation, underline the rapid disappearance of coherence effects, and the ensuing probabilistic nature of the medium induced cascade. We discuss how large radiative corrections modify the classical picture of the gluon cascade, and how these can be absorbed in a renormalization of the jet quenching parameter $hat q $. Then, we analyze the (wave)-turbulent transport of energy along the medium induced cascade, and point out the main characteristics of the angular structure of such a cascade. Finally, color decoherence of the in-cone jet structure is discussed. Modest contact with phenomenology is presented towards the end of the review.
A study of the horn in the particle ratio $K^+/pi^+$ for central heavy-ion collisions as a function of the collision energy $sqrt{s}$ is presented. We analyse two different interpretations: the onset of deconfinement and the transition from a baryon- to a meson-dominated hadron gas. We use a realistic equation of state (EOS), which includes both hadron and quark degrees-of-freedom. The Taub-adiabate procedure is followed to determine the system at the early stage. Our results do not support an explanation of the horn as due to the onset of deconfinement. Using only hadronic EOS we reproduced the energy dependence of the $K^+/pi^+$ and $Lambda/pi^-$ ratios employing an experimental parametrisation of the freeze-out curve. We observe a transition between a baryon- and a meson-dominated regime; however, the reproduction of the $K^+/pi^+$ and $Lambda/pi^-$ ratios as a function of $sqrt{s}$ is not completely satisfying. We finally propose a new idea for the interpretation of the data, the roll-over scheme, in which the scalar meson field $sigma$ has not reached the thermal equilibrium at freeze-out. The rool-over scheme for the equilibration of the $sigma$-field is based on the inflation mechanism. The non-equilibrium evolution of the scalar field influences the particle production, e.g. $K^+/pi^+$, however, the fixing of the free parameters in this model is still an open issue.
The LHC data on jet fragmentation function and jet shapes in PbPb collisions at center-of-mass energy 2.76 TeV per nucleon pair are analyzed and interpreted in the frameworks of PYQUEN jet quenching model. A specific modification of longitudinal and radial jet profiles in most central PbPb collisions as compared with pp data is close to that obtained with PYQUEN simulations taking into account wide-angle radiative and collisional partonic energy loss. The contribution of radiative and collisional loss to the medium-modified intra-jet structure is estimated.
Transverse momentum broadening and energy loss of a propagating parton are dictated by the space-time profile of the jet transport coefficient $hat q$ in a dense QCD medium. The spatial gradient of $hat q$ perpendicular to the propagation direction can lead to a drift and asymmetry in parton transverse momentum distribution. Such an asymmetry depends on both the spatial position along the transverse gradient and path length of a propagating parton as shown by numerical solutions of the Boltzmann transport in the simplified form of a drift-diffusion equation. In high-energy heavy-ion collisions, this asymmetry with respect to a plane defined by the beam and trigger particle (photon, hadron or jet) with a given orientation relative to the event plane is shown to be closely related to the transverse position of the initial jet production in full event-by-event simulations within the linear Boltzmann transport model. Such a gradient tomography can be used to localize the initial jet production position for more detailed study of jet quenching and properties of the quark-gluon plasma along a given propagation path in heavy-ion collisions.