Three dimensional generalization of the $J_1$-$J_2$ Heisenberg model on a square lattice and role of the interlayer coupling $J_c$


Abstract in English

A possibility to describe magnetism in the iron pnictide parent compounds in terms of the two-dimensional frustrated Heisenberg $J_1$-$J_2$ model has been actively discussed recently. However, recent neutron scattering data has shown that the pnictides have a relatively large spin wave dispersion in the direction perpendicular to the planes. This indicates that the third dimension is very important. Motivated by this observation we study the $J_1$-$J_2$-$J_c$ model that is the three dimensional generalization of the $J_1$-$J_2$ Heisenberg model for $S = 1/2$ and S = 1. Using self-consistent spin wave theory we present a detailed description of the staggered magnetization and magnetic excitations in the collinear state. We find that the introduction of the interlayer coupling $J_c$ suppresses the quantum fluctuations and strengthens the long range ordering. In the $J_1$-$J_2$-$J_c$ model, we find two qualitatively distinct scenarios for how the collinear phase becomes unstable upon increasing $J_1$. Either the magnetization or one of the spin wave velocities vanishes. For $S = 1/2$ renormalization due to quantum fluctuations is significantly stronger than for S=1, in particular close to the quantum phase transition. Our findings for the $J_1$-$J_2$-$J_c$ model are of general theoretical interest, however, the results show that it is unlikely that the model is relevant to undoped pnictides.

Download