Do you want to publish a course? Click here

Virtual Observatory based identification of AX J194939+2631 as a new cataclysmic variable

487   0   0.0 ( 0 )
 Added by Igor Chilingarian
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the discovery of a new cataclysmic variable (CV) among unidentified objects from the ASCA Galactic Plane Survey made using the Virtual Observatory data mining. First, we identified AX J194939+2631 with IPHAS J194938.39+263149.2, the only prominent H-alpha emitter among 400 sources in a 1 arcmin field of the IPHAS survey, then secured as a single faint X-ray source found in an archival Chandra dataset. Spectroscopic follow-up with the 3.5-m Calar Alto telescope confirmed its classification as a CV, possibly of magnetic nature. Our analysis suggests that AX J194939+2631 is a medium distance system (d ~ 0.6 kpc) containing a late-K or early-M type dwarf as a secondary component and a partially disrupted accretion disc revealed by the double-peaked H-alpha line. However, additional deep observations are needed to confirm our tentative classification of this object as an intermediate polar.



rate research

Read More

We report the identification and follow-up of the transient SRG 062340.2-265715 detected with both instruments on board the Spektrum-Roentgen-Gamma mission. Optical spectroscopy of the G=12.5 counterpart firmly classifies the object as a novalike cataclysmic variable (CV) at a distance of 495 pc. A highly significant TESS period of 3.941 hours, tentatively identified with the orbital period of the binary, could not be found when the object was reobserved with TESS two years later. The newer high-cadence TESS data revealed quasi-periodic oscillations around 25 min, while ground-based photometry indicated periodic variability at 32 min. Located in very sparsely populated regions of color-magnitude diagrams involving X-ray and optical magnitudes and colors, the new object could be an X-ray underluminous magnetic CV, an intermediate polar, or an overluminous nonmagnetic CV. The lack of uniquely identified spin and orbital periods prevents a final classification. The site of X-ray production in the system, L(X, bol) = 4.8 x 10^{32} erg/s, remains to be understood given its high variability on long and short timescales.
We present phase-resolved spectroscopy and photometry of a source discovered with the Chandra Galactic Bulge Survey (GBS), CXOGBSJ174444.7-260330 (aka CX93 and CX153 in the previously published GBS list). We find two possible values for the orbital period P, differing from each other by 13 seconds. The most likely solution is P =5.69014(6) hours. The optical lightcurves show ellipsoidal modulations, whose modeling provides an inclination of 32+-1 degrees for the most likely P. The spectra are dominated by a K5V companion star (the disc veiling is <~5%). Broad and structured emission from the Balmer lines is also detected, as well as fainter emission from HeI. From the absorption lines we measure K2 =117+-8km/s and v sin i = 69+-7km/s. By solving the system mass function we find M1=0.8+-0.2Msun for the favored P and i, consistent with a white dwarf accretor, and M2=0.6+-0.2Msun. We estimate a distance in the range 400-700 pc. Although in a low accretion state, both spectroscopy and photometry provide evidence of variability on a timescale of months or faster. Besides finding a new, long orbital period cataclysmic variable in a low accretion state, this work shows that the design of the GBS works efficiently to find accreting X-ray binaries in quiescence, highlighting that the spectra of CVs in a low-accretion state can at times appear suggestive of a quiescent neutron star or a black hole system.
67 - A. Price , B. Gary , J. Bedient 2004
We present time-series observations, spectra and archival outburst data of a newly-discovered variable star in Hercules, Var Her 04. Its orbital period, mass ratio, and outburst amplitude resemble those of the UGWZ-type subclass of UGSU dwarf novae. However, its supercycle and outburst light curve defy classification as a clear UGWZ. Var Her 04 is most similar to the small group of possible hydrogen-burning ``period bouncers, dwarf novae that have passed beyond the period minimum and returned.
The nature and physical properties of asteroids, in particular those orbiting in the near-Earth space, are of scientific interest and practical importance. Exoplanet surveys can be excellent resources to detect asteroids, both already known and new objects. This is due their similar observing requirements: large fields of view, long sequences, and short cadence. If the targeted fields are not located far from the ecliptic, many asteroids will cross occasionally the field of view. We present two complementary methodologies to identify asteroids serendipitously observed in large-area astronomical surveys. One methodology focuses on detecting already known asteroids using the Virtual Observatory tool SkyBoT, which predicts their positions and motions in the sky at a specific epoch. The other methodology applies the ssos pipeline, which is able to identify known and new asteroids based on their apparent motion. The application of these methods to the 6.4 deg 2 of the sky covered by the Wide-Field CAMera Transit Survey in the J-band is described. We identified 15 661 positions of 1 821 different asteroids. Of them, 182 are potential new discoveries. A publicly accessible online, Virtual Observatory compliant catalogue was created. We obtained the shapes and periods for five of our asteroids from their light-curves built with additional photometry taken from external archives. We demonstrated that our methodologies are robust and reliable approaches to find, at zero cost of observing time, asteroids observed by chance in astronomical surveys. Our future goal is to apply them to other surveys with adequate temporal coverage.
We present a study of the cataclysmic variable star PT Per based on archival XMM-Newton X-ray data and new optical spectroscopy from the WHT with ISIS. The X-ray data show deep minima which recur at a period of 82 minutes and a hard, unabsorbed X-ray spectrum. The optical spectra of PT Per show a relatively featureless blue continuum. From an analysis of the X-ray and optical data we conclude that PT Per is likely to be a magnetic cataclysmic variable of the polar class in which the minima correspond to those phase intervals when the accretion column rotates out of the field of view of the observer. We suggest that the optical spectrum, obtained around 4 years after the X-ray coverage, is dominated by the white dwarf in the system, implying that PT Per was in a low accretion state at the time of the observations. An analysis of the likely system parameters for PT Per suggests a distance of $approx90$ pc and a very low-mass secondary, consistent with the idea that PT Per is a period-bounce binary.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا