Do you want to publish a course? Click here

Evolution of massive Be and Oe stars at low metallicity towards the Long Gamma Ray burstsfootnote{Based on ESO runs 069.D-0275(A), 072.D-0245(A) and (C).}

102   0   0.0 ( 0 )
 Added by Christophe Martayan
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Several studies have shown recently that at low metallicity B-type stars rotate faster than in environments of high metallicity. This is a typical case in the SMC. As a consequence, it is expected that a larger number of fast rotators is found in the SMC than in the Galaxy, in particular a higher fraction of Be/Oe stars. Using the ESO-WFI in its slitless mode, the data from the SMC open clusters were examined and an occurrence of Be stars 3 to 5 times larger than in the Galaxy was found. The evolution of the angular rotational velocity at different metallicities seems to be the main key to understand the specific behavior and evolution of these stars. According to the results from this WFI study, the observational clues obtained from the SMC WR stars and massive stars, and the theoretical predictions of the characteristics must have the long gamma-ray burst progenitors, we have identified the low metallicity massive Be and Oe stars as potential LGRB progenitors. To this end, the ZAMS rotational velocities of the SMC Be/Oe stars were determined and compared to models. The expected rates and the numbers of LGRB were then calculated and compared to the observed ones. Thus, a high probability was found that low metallicity Be/Oe stars can be LGRB progenitors. In this document, we describe the different steps followed in these studies: determination of the number of Be/Oe stars at different metallicities, identification of the clues that lead to suppose the low metallicity Be/Oe stars as LGRB progenitors, comparison of models with observations.



rate research

Read More

According to recent theoretical studies, the progenitors of Long Gamma Ray Bursts should be very fast rotating stars, massive enough but not so for collapsing into a black hole. In addition, recent observations seem to show that stars of about 20 solar masses could be at the origin of LGRBs. At low metallicity B-type stars rotate faster than at higher metallicity. We found with the ESO-WFI an occurrence of Be/Oe stars, that are quasi critical rotators, 3 to 5 times larger in the SMC than in the Galaxy. According to our results, and using observational clues on the SMC WR stars, as well as the theoretical predictions of the characteristics must have the LGRB progenitors, we have identified the low metallicity massive Be/Oe stars as potential LGRB progenitors. To support this identification, the expected rates and the numbers of LGRB were then calculated and compared to the observed ones: 3 to 6 LGRBs were found in the local universe in 11 years while 8 were actually observed.
At low metallicity the B-type stars rotate faster than at higher metallicity, typically in the SMC. As a consequence, it was expected a larger number of fast rotators in the SMC than in the Galaxy, in particular more Be/Oe stars. With the ESO-WFI in its slitless mode, the SMC open clusters were examined and an occurence of Be stars 3 to 5 times larger than in the Galaxy was found. The evolution of the angular rotational velocity seems to be the main key on the understanding of the specific behaviour and of the stellar evolution of such stars at different metallicities. With the results of this WFI study and using observational clues on the SMC WR stars and massive stars, as well as the theoretical indications of long gamma-ray burst progenitors, we identify the low metallicity massive Be and Oe stars as potential LGRB progenitors. Therefore the expected rates and numbers of LGRB are calculated and compared to the observed ones, leading to a good probability that low metallicity Be/Oe stars are actually LGRB progenitors.
Context: The identification of long-gamma-ray-bursts (LGRBs) is still uncertain, although the collapsar engine of fast-rotating massive stars is gaining a strong consensus. Aims: We propose that low-metallicity Be and Oe stars, which are massive fast rotators, as potential LGRBs progenitors. Methods: We checked this hypothesis by 1) testing the global specific angular momentum of Oe/Be stars in the ZAMS with the SMC metallicity, 2) comparing the ZAMS ($Omega/Omega_{rm c},M/M_{odot}$) parameters of these stars with the area predicted theoretically for progenitors with metallicity $Z=0.002$, and 3) calculating the expected rate of LGRBs/year/galaxy and comparing them with the observed ones. To this end, we determined the ZAMS linear and angular rotational velocities for SMC Be and Oe stars using the observed vsini parameters, corrected from the underestimation induced by the gravitational darkening effect. Results: The angular velocities of SMC Oe/Be stars are on average $<Omega/Omega_{rm c}>=0.95$ in the ZAMS. These velocities are in the area theoretically predicted for the LGRBs progenitors. We estimated the yearly rate per galaxy of LGRBs and the number of LGRBs produced in the local Universe up to z=0.2. We have considered that the mass range of LGRB progenitors corresponds to stars hotter than spectral types B0-B1 and used individual beaming angles from 5 to 15degr. We thus obtain $R^{rm pred}_{rm LGRB}sim10^{-7}$ to $sim10^{-6}$ LGRBs/year/galaxy, which represents on average 2 to 14 LGRB predicted events in the local Universe during the past 11 years. The predicted rates could widely surpass the observed ones [(0.2-3)$times10^{-7}$ LGRBs/year/galaxy; 8 LGRBs observed in the local Universe during the last 11 years] if the stellar counts were made from the spectral type B1-B2, in accordance with the expected apparent spectral types of the appropriate massive fast rotators. Conclusion: We conclude that the massive Be/Oe stars with SMC metallicity could be LGRBs progenitors. Nevertheless, other SMC O/B stars without emission lines, which have high enough specific angular momentum, can enhance the predicted $R_{rm LGRB}$ rate.
We present multi-instruments and multi-wavelengths observations of the famous LBV star Pistol Star. These observations are part of a larger program about early O stars at different metallicities. The Pistol star has been claimed as the most massive star known, with 250 solar masses. We present the preliminary results based on X-Shooter spectra, as well as the observations performed with the VLTI-AMBER and the VLT-NACO adaptive optics. The X-shooter spectrograph allows to obtain simultaneously a spectrum from the UV to the K-band with a resolving power of $sim$15000. The preliminary results obtained indicate that Pistol Star has similar properties of Eta Car, including shells of matter, but also the binarity. Other objects of the program, here briefly presented, were selected for their particular nature: early O stars with mass discrepancies between stellar evolution models and observations, discrepancies with the wind momentum luminosity relation.
We present synthetic spectra and SEDs computed along evolutionary tracks at Z=1/5 Zsun and Z=1/30 Zsun, for masses between 15 and 150 Msun. We predict that the most massive stars all start their evolution as O2 dwarfs at sub-solar metallicities. The fraction of lifetime spent in the O2V phase increases at lower metallicity. The distribution of dwarfs and giants we predict in the SMC accurately reproduces the observations. Supergiants appear at slightly higher effective temperatures than we predict. More massive stars enter the giant and supergiant phases closer to the ZAMS, but not as close as for solar metallicity. This is due to the reduced stellar winds at lower metallicity. Our models with masses higher than ~60 Msun should appear as O and B stars, whereas these objects are not observed, confirming a trend reported in the recent literature. At Z=1/30 Zsun, dwarfs cover a wider fraction of the MS and giants and supergiants appear at lower effective temperatures than at Z=1/5 Zsun. The UV spectra of these low-metallicity stars have only weak P-Cygni profiles. HeII 1640 sometimes shows a net emission in the most massive models, with an equivalent width reaching ~1.2 A. For both sets of metallicities, we provide synthetic spectroscopy in the wavelength range 4500-8000 A. This range will be covered by the instruments HARMONI and MOSAICS on the ELT and will be relevant to identify hot massive stars in Local Group galaxies with low extinction. We suggest the use of the ratio of HeI 7065 to HeII 5412 as a diagnostic for spectral type. We show that this ratio does not depend on metallicity. Finally, we discuss the ionizing fluxes of our models. The relation between the hydrogen ionizing flux per unit area versus effective temperature depends only weakly on metallicity. The ratios of HeI and HeII to H ionizing fluxes both depend on metallicity, although in a slightly different way.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا