Do you want to publish a course? Click here

The MIDAS Experiment: A New Technique for the Detection of Extensive Air Showers

89   0   0.0 ( 0 )
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent measurements suggest free electrons created in ultra-high energy cosmic ray extensive air showers (EAS) can interact with neutral air molecules producing Bremsstrahlung radiation in the microwave regime. The microwave radiation produced is expected to scale with the number of free electrons in the shower, which itself is a function of the energy of the primary particle and atmospheric depth. Using these properties a calorimetric measurement of the EAS is possible. This technique is analogous to fluorescence detection with the added benefit of a nearly 100% duty cycle and practically no atmospheric attenuation. The Microwave Detection of Air Showers (MIDAS) prototype is currently being developed at the University of Chicago. MIDAS consists of a 53 feed receiver operating in the 3.4 to 4.2 GHz band. The camera is deployed on a 4.5 meter parabolic reflector and is instrumented with high speed power detectors and autonomous FPGA trigger electronics. We present the current status of the MIDAS instrument and an outlook for future development.



rate research

Read More

Horizon-T is an innovative detector system constructed to study Extensive Air Showers (EAS) in the energy range above 10^16 eV coming from a wide range of zenith angles (0 - 85 degrees). The system is located at Tien Shan high-altitude Science Station of Lebedev Physical Institute of the Russian Academy of Sciences at approximately 3340 meters above the sea level. It consists of eight charged particle detection points separated by the distance up to one kilometer as well as optical detector subsystem to view the Vavilov-Cerenkov light from the EAS. The time resolution of charged particles and Vavilov-Cerenkov light photons passage of the detector system is a few ns. This level of resolution allows conducting research of atmospheric development of individual EAS.
88 - Tim Huege 2017
Radio detection of extensive air showers initiated in the Earths atmosphere has made tremendous progress in the last decade. Today, radio detection is routinely used in several cosmic-ray observatories. The physics of the radio emission in air showers is well-understood, and analysis techniques have been developed to determine the arrival direction, the energy and an estimate for the mass of the primary particle from the radio measurements. The achieved resolutions are competitive with those of more traditional techniques. In this article, I shortly review the most important achievements and discuss the potential for future applications.
86 - J. D. Bray , A. Nelles 2016
One possible approach for detecting ultra-high-energy cosmic rays and neutrinos is to search for radio emission from extensive air showers created when they interact in the atmosphere of Jupiter, effectively utilizing Jupiter as a particle detector. We investigate the potential of this approach. For searches with current or planned radio telescopes we find that the effective area for detection of cosmic rays is substantial (~3*10^7 km^2), but the acceptance angle is so small that the typical geometric aperture (~10^3 km^2 sr) is less than that of existing terrestrial detectors, and cosmic rays also cannot be detected below an extremely high threshold energy (~10^23 eV). The geometric aperture for neutrinos is slightly larger, and greater sensitivity can be achieved with a radio detector on a Jupiter-orbiting satellite, but in neither case is this sufficient to constitute a practical detection technique. Exploitation of the large surface area of Jupiter for detecting ultra-high-energy particles remains a long-term prospect that will require a different technique, such as orbital fluorescence detection.
61 - Manana Svanidze 2020
Extensive Air Showers (EAS) arrival direction distribution is studied by means of a 4-detector installation in Telavi (TEL array), which is a node of GELATICA net in Georgia. The description of EAS arrival zenith angle distribution within the spheric layer model of the atmosphere and exponential absorption of showers with the air path is used. It is shown that the variation of zenith angles upper cutoff boundary allows a stable estimation of showers absorption path.
We investigate the possibility of detecting extensive air showers by the radar technique. Considering a bistatic radar system and different shower geometries, we simulate reflection of radio waves off the static plasma produced by the shower in the air. Using the Thomson cross-section for radio wave reflection, we obtain the time evolution of the signal received by the antennas. The frequency upshift of the radar echo and the power received are studied to verify the feasibility of the radar detection technique.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا