No Arabic abstract
The phenomenon of magnetic quantum oscillations in the superconducting state poses several questions that still defy satisfactory answers. A key controversial issue concerns the additional damping observed in the vortex state. Here, we show results of mu SR, dHvA, and SQUID magnetization measurements on borocarbide superconductors, indicating that a sharp drop observed in the dHvA amplitude just below H_{c2} is correlated with enhanced disorder of the vortex lattice in the peak-effect region, which significantly enhances quasiparticle scattering by the pair potential.
We study effects of pinning on the dynamics of a vortex lattice in a type II superconductor in the strong-pinning situation and determine the force--velocity (or current--voltage) characteristic combining analytical and numerical methods. Our analysis deals with a small density $n_p$ of defects that act with a large force $f_p$ on the vortices, thereby inducing bistable configurations that are a characteristic feature of strong pinning theory. We determine the velocity-dependent average pinning-force density $langle F_p(v)rangle$ and find that it changes on the velocity scale $v_p sim f_p/eta a_0^3$, where $eta$ is the viscosity of vortex motion and $a_0$ the distance between vortices. In the small pin-density limit, this velocity is much larger than the typical flow velocity $v_c sim F_c/eta$ of the free vortex system at drives near the critical force-density $F_c = langle F_p(v=0)rangle propto n_p f_p$. As a result, we find a generic excess-force characteristic, a nearly linear force--velocity characteristic shifted by the critical force-density $F_c$; the linear flux-flow regime is approached only at large drives. Our analysis provides a derivation of Coulombs law of dry friction for the case of strong vortex pinning.
The vortex lattice in a Type II superconductor provides a versatile model system to investigate the order-disorder transition in a periodic medium in the presence of random pinning. Here, using scanning tunnelling spectroscopy in a weakly pinned Co0.0075NbSe2 single crystal, we show that at low temperatures, the vortex lattice in a 3-dimensional superconductor disorders in two steps across the peak effect. At the onset of the peak effect, the equilibrium Bragg glass transforms into an orientational glass through the proliferation of dislocations. At a higher field, the dislocations dissociate into isolated disclination giving rise to an amorphous vortex glass. We also show the existence of a variety of additional non-equilibrium metastable states, which can be accessed through different thermomagnetic cycling.
Oscillatory dynamics and quasi-static Campbell regime of the vortex lattice (VL) in twinned YBa2Cu3O7 single crystals has been explored at low fields near the peak effect (PE) region by linear and non-linear ac susceptibility measurements. We show evidence that the PE is a dynamic anomaly observed in the non-linear response, and is absent in the Labusch constant derived from the linear Campbell regime. Static properties play a major role however, and we identify two H(T) lines defining the onset and the end of the effect. At H1(T) a sudden increase in the curvature of the pinning potential wells with field coincides with the PE onset. At a higher field, H2(T), a sudden increase in linear ac losses, where dissipative forces overcome pinning forces, marks the end of Campbell regime and, simultaneously, the end of the PE anomaly. Vortex dynamics was probed in frequency dependent measurements, and we find that in the PE region, vortex dynamics goes beyond the description of a power law with a finite creep exponent for the constitutive relation.
A review is given on the theory of vortex-glass phases in impure type-II superconductors in an external field. We begin with a brief discussion of the effects of thermal fluctuations on the spontaneously broken U(1) and translation symmetries, on the global phase diagram and on the critical behaviour. Introducing disorder we restrict ourselves to the experimentally most relevant case of weak uncorrelated randomness which is known to destroy the long-ranged translational order of the Abrikosov lattice in three dimensions. Elucidating possible residual glassy ordered phases, we distinguish betwee positional and phase-coherent vortex glasses. The discussion of elastic vortex glasses, in two and three dimensions occupy the main part of our review. In particular, in three dimensions there exists an elastic vortex-glass phase which still shows quasi-long-range translational order: the `Bragg glass. It is shown that this phase is stable with respect to the formation of dislocations for intermediate fields. Preliminary results suggest that the Bragg-glass phase may not show phase-coherent vortex-glass order. The latter is expected to occur in systems with weak disorder only in higher dimensions. We further demonstrate that the linear resistivity vanishes in the vortex-glass phase. The vortex-glass transition is studied in detail for a superconducting film in a parallel field. Finally, we review some recent developments concerning driven vortex-line lattices moving in a random environment.
The dynamics of vortices in type II superconductors exhibit a variety of patterns whose origin is poorly understood. This is partly due to the nonlinearity of the vortex mobility which gives rise to singular behavior in the vortex densities. Such singular behavior complicates the application of standard linear stability analysis. In this paper, as a first step towards dealing with these dynamical phenomena, we analyze the dynamical stability of a front between vortices and antivortices. In particular we focus on the question of whether an instability of the vortex front can occur in the absence of a coupling to the temperature. Borrowing ideas developed for singular bacterial growth fronts, we perform an explicit linear stability analysis which shows that, for sufficiently large front velocities and in the absence of coupling to the temperature, such vortex fronts are stable even in the presence of in-plane anisotropy. This result differs from previous conclusions drawn on the basis of approximate calculations for stationary fronts. As our method extends to more complicated models, which could include coupling to the temperature or to other fields, it provides the basis for a more systematic stability analysis of nonlinear vortex front dynamics.