Do you want to publish a course? Click here

Misfit Strain Accommodation in Epitaxial ABO3 Perovskites: Lattice Rotations and Lattice Modulations

271   0   0.0 ( 0 )
 Added by Arturas Vailionis
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a study of the lattice response to the compressive and tensile biaxial stress in La0.67Sr0.33MnO3 (LSMO) and SrRuO3 (SRO) thin films grown on a variety of single crystal substrates: SrTiO3, DyScO3, NdGaO3 and (La,Sr)(Al,Ta)O3. The results show, that in thin films under misfit strain, both SRO and LSMO lattices, which in bulk form have orthorhombic (SRO) and rhombohedral (LSMO) structures, assume unit cells that are monoclinic under compressive stress and tetragonal under tensile stress. The applied stress effectively modifies the BO6 octahedra rotations, which degree and direction can be controlled by magnitude and sign of the misfit strain. Such lattice distortions change the B-O-B bond angles and therefore are expected to affect magnetic and electronic properties of the ABO3 perovskites.



rate research

Read More

The existence of band gaps in Mott insulators such as perovskite oxides with partially filled 3d shells has been traditionally explained in terms of strong, dynamic inter-electronic repulsion codified by the on-site repulsion energy U in the Hubbard Hamiltonian. The success of the DFT+U approach where an empirical on-site potential term U is added to the exchange-and correlation Density Functional Theory (DFT) raised questions on whether U in DFT+U represents interelectronic correlation in the same way as it does in the Hubbard Hamiltonian, and if empiricism in selecting U can be avoided. Here we illustrate that ab-initio DFT without any U is able to predict gapping trends and structural symmetry breaking (octahedra rotations, Jahn-Teller modes, bond disproportionation) for all ABO3 3d perovskites from titanates to nickelates in both spin-ordered and spin disordered paramagnetic phases. We describe the paramagnetic phases as a supercell where individual sites can have different local environments thereby allowing DFT to develop finite moments on different sites as long as the total cell has zero moment. We use a recently developed exchange and correlation functional (SCAN) that is sanctioned by the usual single-determinant, mean-field DFT paradigm with static correlations, but has a more precise rendering of self-interaction cancelation. Our results suggest that strong dynamic electronic correlations are not playing a universal role in gapping of 3d ABO3 Mott insulators, and opens the way for future applications of DFT for studying a plethora of complexity effects that depend on the existence of gaps, such as doping, defects, and band alignment in ABO3 oxides.
The layered {beta}-NaMnO2, a promising Na-ion energy-storage material has been investigated for its triangular lattice capability to promote complex magnetic configurations that may release symmetry restrictions for the coexistence of ferroelectric and magnetic orders. The complexity of the neutron powder diffraction patterns underlines that the routinely adopted commensurate structural models are inadequate. Instead, a single-phase superspace symmetry description is necessary, demonstrating that the material crystallizes in a compositionally modulated q= (0.077(1), 0, 0) structure. Here, Mn3+ Jahn-Teller distorted MnO6 octahedra form corrugated layer stacking sequences of the {beta}-NaMnO2 type, which are interrupted by flat sheets of the {alpha}-like oxygen topology. Spontaneous long-range collinear antiferromagnetic order, defined by the propagation vector k= (1/2, 1/2, 1/2), appears below TN1= 200 K. Moreover, a second transition into a spatially modulated proper-screw magnetic state (k+-q) is established at TN2= 95 K, with an antiferromagnetic order parameter resembling that of a two-dimensional (2D) system. The evolution of 23Na NMR spin-lattice relaxation identifies a magnetically inhomogene-ous state in the intermediate T-region (TN2 <T< TN1), while its strong suppression below TN2 indicates that a spin-gap opens in the excitation spectrum. High-resolution neutron inelastic scattering confirms that the magnetic dynamics are indeed gapped ({Delta}~5 meV) in the low-temperature magnetic phase, while simulations on the basis of the single-mode approximation suggest that Mn-spins residing on ad-jacent antiferromagnetic chains, establish sizable 2D correlations. Our analysis points that novel struc-tural degrees of freedom promote, cooperative magnetism and emerging dielectric properties in this non-perovskite-type of manganite.
The stoichiometric Ni$_{50}$Mn$_{25}$In$_{25}$ Heusler alloy transforms from a stable ferromagnetic austenitic ground state to an incommensurate modulated martensitic ground state with a progressive replacement of In with Mn without any pre-transition phases. The absence of pre-transition phases like strain glass in Ni$_{50}$Mn$_{25+x}$In$_{25-x}$ alloys is explained to be the ability of the ferromagnetic cubic structure to accommodate the lattice strain caused by atomic size differences of In and Mn atoms. Beyond the critical value of $x$ = 8.75, the alloys undergo martensitic transformation despite the formation of ferromagnetic and antiferromagnetic clusters and the appearance of a super spin glass state.
The interrelation between the epitaxial strain and oxygen deficiency in La0.7Ca0.3MnO3-{delta} thin films was studied in terms of structural and functional properties. The films with a thickness of 1000{AA} were prepared using a PLD system equipped with a RHEED facility and a pyrometric film temperature control. The epitaxial strain and the oxygen deficiency in the samples were systematically modified using three different substrates: SrTiO3, (LaAlO3)0.3-(Sr2AlTaO6)0.7 and LaSrAlO4, and four different oxygen pressures during film growth ranging from 0.27mbar to 0.1mbar. It could be demonstrated that the oxygen incorporation depends on the epitaxial strain: oxygen vacancies were induced to accommodate tensile strain whereas the compressive strain suppressed the generation of oxygen vacancies.
Ferroelectric BaTiO3 films with large polarization have been integrated with Si(001) by pulsed laser deposition. High quality c-oriented epitaxial films are obtained in a substrate temperature range of about 300 deg C wide. The deposition temperature critically affects the growth kinetics and thermodynamics balance, resulting on a high impact in the strain of the BaTiO3 polar axis, which can exceed 2% in films thicker than 100 nm. The ferroelectric polarization scales with the strain and therefore deposition temperature can be used as an efficient tool to tailor ferroelectric polarization. The developed strategy overcomes the main limitations of the conventional strain engineering methodologies based on substrate selection: it can be applied to films on specific substrates including Si(001) and perovskites, and it is not restricted to ultrathin films.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا